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Background-—We asked whether, after excluding familial hypercholesterolemia, individuals with high low-density lipoprotein
cholesterol (LDL-C) or triacylglyceride levels and a family history of the same hyperlipidemia have greater coronary artery disease
risk or different lipidomic profiles compared with population-based hyperlipidemias.

Methods and Results-—We determined incident coronary artery disease risk for 755 members of 66 hyperlipidemic families (≥2
first-degree relatives with similar hyperlipidemia) and 19 644 Finnish FINRISK population study participants. We quantified 151
circulating lipid species from 550 members of 73 hyperlipidemic families and 897 FINRISK participants using mass spectrometric
shotgun lipidomics. Familial hypercholesterolemia was excluded using functional LDL receptor testing and genotyping.
Hyperlipidemias (LDL-C or triacylglycerides >90th population percentile) associated with increased coronary artery disease risk in
meta-analysis of the hyperlipidemic families and the population cohort (high LDL-C: hazard ratio, 1.74 [95% CI, 1.48–2.04]; high
triacylglycerides: hazard ratio, 1.38 [95% CI, 1.09–1.74]). Risk estimates were similar in the family and population cohorts also
after adjusting for lipid-lowering medication. In lipidomic profiling, high LDL-C associated with 108 lipid species, and high
triacylglycerides associated with 131 lipid species in either cohort (at 5% false discovery rate; P-value range 0.038–2.3910�56).
Lipidomic profiles were highly similar for hyperlipidemic individuals in the families and the population (LDL-C: r=0.80;
triacylglycerides: r=0.96; no lipid species deviated between the cohorts).

Conclusions-—Hyperlipidemias with family history conferred similar coronary artery disease risk as population-based
hyperlipidemias. We identified distinct lipidomic profiles associated with high LDL-C and triacylglycerides. Lipidomic profiles
were similar between hyperlipidemias with family history and population-ascertained hyperlipidemias, providing evidence of similar
and overlapping underlying mechanisms. ( J Am Heart Assoc. 2019;00:e012415. DOI: 10.1161/JAHA.119.012415.)
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H igh levels of low-density lipoprotein cholesterol (LDL-C)
and triacylglycerides have been identified as causal risk

factors for atherosclerotic cardiovascular disease (ASCVD).1,2

These hyperlipidemias may arise through lifestyle factors, but
they are also highly heritable.3–6 An estimated half of patients
with premature coronary artery disease (CAD) have dyslipi-
demia with a family history of dyslipidemia, most of which are
characterized by increases in LDL-C and/or triacylglycerides.7

Whether dyslipidemias with family history should be
diagnosed and managed differently from hyperlipidemias
observed in randomly ascertained individuals in the general
population is uncertain. Clinical guidelines emphasize their
identification but, with the exception of familial hypercholes-
terolemia (FH), refrain from strong management recommen-
dations.8,9 The monogenic FH patients with rare high-impact
LDL-C–elevating variants have a higher risk of developing CAD
than noncarriers with similar lipid levels.10 This is potentially
related to lifelong exposure to high LDL-C levels and suggests
that these individuals may benefit from earlier or more
aggressive LDL-C–lowering therapy. In contrast with FH, many
other hyperlipidemias with family history appear genetically
similar to population-ascertained hyperlipidemias.11–13

Whether such hyperlipidemias with family history also confer
additional elevation in ASCVD risk is not known.

Herein, we assess incident ASCVD risk associated with
familial aggregation of high LDL-C and triacylglycerides,
excluding individuals with FH. We also ask whether their
circulating lipid phenotypes are similar compared with
population-ascertained hyperlipidemias. Recent technological
advancements have allowed replicable and simultaneous
quantification of hundreds of lipid species, the main

constituents of LDL and triacylglyceride-rich lipoproteins,
through lipidomic profiling.14,15 We test whether detailed
phenotypic differences in lipidomic profiles, which might
reflect different pathophysiological features and ASCVD
susceptibility, exist between hyperlipidemias with family
history and population-ascertained hyperlipidemias. Using a
direct infusion platform that combines absolute quantification
with high throughput, we were able to overcome problems
that have hampered many previous studies.16

In this study, we first estimated the CAD risk associated with
high LDL-C or triacylglyceride levels with family history and
population-ascertained hyperlipidemias with similarly high LDL-C
or triacylglycerides. Second, we characterized the lipidomic
profiles associated with elevated plasma levels of LDL-C and
triacylglycerides. Finally, we compared the lipidomic profiles of
hyperlipidemias with family history and population-ascertained
hyperlipidemias to assess their potential differences.

Materials and Methods

Subjects and Clinical Ascertainment
The Finnish hyperlipidemia families included in this cohort
study (74 families, n=1445 individuals with LDL-C and
triacylglyceride measures) were identified as part of the
EUFAM (European Multicenter Study on Familial Dyslipi-
demias in Patients With Premature Coronary Heart Disease)
project. Initial recruitment aimed to identify families with
familial combined hyperlipidemia (at least 2 family members
with total cholesterol and/or triacylglycerides ≥90th popula-
tion percentile) or families with aggregation of low high-
density lipoprotein cholesterol. Classic FH was excluded on
the basis of an in-house functional LDL receptor test for the
probands and later genotyping of selected Finnish FH
mutations in other family members with high LDL-C; further
recruitment was not pursued in putative FH pedigrees.17 For
the present study, designation of “high LDL-C with family
history” or “high triacylglycerides with family history” was
made if at least 2 first-degree relatives had LDL-C or
triacylglyceride levels, respectively, that were >90th age-
and sex-specific Finnish 1997 population percentiles
(Table S1) without being affected by diabetes mellitus or
other relevant comorbidities (Figure S1). More detailed
information is given in Data S1.

Individuals from the Finnish National FINRISK study were
used as a Finnish population-based comparison group. A total
of 19 644 individuals from the FINRISK study 1992 to 2002
cohorts and 755 individuals from EUFAM families were linked
with the national hospital discharge and causes-of-death
registries. Clinical incident CAD event end points were defined
as either myocardial infarction or coronary revascularization
(coronary angioplasty or coronary artery bypass grafting).

Clinical Perspective

What Is New?

• Beyond familial hypercholesterolemia, the impact of hyper-
lipidemic family history on coronary artery disease risk is
debated.

• Coronary artery disease risk was comparable in our
hyperlipidemic subjects (low-density lipoprotein cholesterol
or triacylglycerides >90th population percentile) with family
history and subjects with population-ascertained hyperlipi-
demias.

• The lipidomic profiles of such hyperlipidemias were inde-
pendent of family history, providing evidence for similar
and/or overlapping metabolic pathways.

What Are the Clinical Implications?

• Our results do not support different screening for those with
a family history of hyperlipidemia and sporadically discov-
ered hyperlipidemic cases.
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CVD was defined as CAD or stroke, excluding subarachnoid
hemorrhage. Mean (range) follow-up time from baseline to
CAD end point, death, or end of registry follow-up was 16.1
(0.1–20.1) years in EUFAM and 12.6 (0.02–19.0) years in the
FINRISK study. More detailed information is given in Data S1.

Written informed consent was obtained from all partici-
pants, except the 1992 FINRISK study survey, for which verbal
informed consent was obtained, as required by legislation and
ethics committees at the time. All samples were collected in
accordance with the Declaration of Helsinki, and study
protocols were approved by the ethics committees of the
participating centers (The Hospital District of Helsinki and
Uusimaa Coordinating Ethics committees, approval No. 184/
13/03/00/12). Because of the consent given by the study
participants, the data cannot be made publicly available. The
data are available through the Institute for Molecular Medicine
Finland Data Access Committee for authorized researchers
who have an institutional review board/ethics approval and
an institutionally approved study plan. For more details,
please contact the Institute for Molecular Medicine Finland
Data Access Committee (fimm-dac@helsinki.fi).

Lipidomics Measurements
Lipidomic profiling of circulating lipid species was performed
for 550 EUFAM family members (all members with available
plasma samples) and for 897 individuals from the FINRISK
2012 study cohort, after excluding individuals with predefined
comorbidities (Data S1) and individuals known to use lipid-
lowering medication or sex hormones at the time of the
measurements. Mass spectrometry–based lipid analysis was
performed at Lipotype GmbH (Dresden, Germany), as
described.14 Plasma and serum lipids were extracted with
methyl tert-butyl ether/methanol (7:2, v/v).18 Samples were
analyzed by direct infusion in a QExactive mass spectrometer
(Thermo Scientific) equipped with a TriVersa NanoMate ion
source (Advion Biosciences). Samples were analyzed in both
positive and negative ion modes in a single acquisition.

Data were analyzed with in-house–developed lipid identi-
fication software based on LipidXplorer.19,20 Reproducibility
was assessed by the inclusion of reference plasma samples.
The median coefficient of variation was <10% across all
batches. A total of 151 species were detected in ≥80% of both
EUFAM and FINRISK study samples and were included in
subsequent analyses. Right-skewed lipidomics measures were
natural logarithm transformed before normalization. More
detailed information is given in Data S1.

Statistical Analyses
To assess the risk of incident CAD associated with the
hyperlipidemias, we used Cox proportional hazards models

using age as the time scale, stratified by sex and clustered by
family, to estimate hazard ratios (HRs) for incident CAD (or
CVD) events, excluding individuals with prevalent CAD (or
CVD). Additional models were also adjusted by lipid-lowering
medication and smoking. The statistical significance of
intercohort differences in HRs was estimated on the basis
of an interaction term between hyperlipidemia status and
cohort designation.

We used linear mixed models to estimate the association
between lipidomic measurements and predictors of interest
(hyperlipidemia status or continuous lipid measurement), as
implemented in MMM (version 1.01).21 Age, age2, and sex
were used as additional fixed-effect covariates.

To account for relatedness among individuals, an empirical
genetic relationship matrix was included as the covariance
structure of a random effect. Statistical significance was
evaluated using the Benjamini-Hochberg method at the 5%
level to account for multiple comparisons similarly to recent
lipidomics studies of CVDs.22,23 R (version 3.4.3) was used for
data transformations and other analyses.24 Detailed informa-
tion is given in Data S1.

Results

Clinical Characteristics and CAD Risk of
Individuals With High Levels of LDL-C or
Triacylglycerides
We first assessed the risk of developing CAD associated with
high levels of LDL-C or triacylglycerides in individuals from the
Finnish FINRISK study population survey and in hyperlipidemic
families ascertained as part of the EUFAM (Figure 1; Table S2;
Figure S1A). Individuals with LDL-C >90th percentile had an
increased risk of incident CAD in the FINRISK study popula-
tion surveys (n=19 644 individuals) compared with other
individuals (HR, 1.74; 95% CI, 1.48–2.05) (Figure 1). The
members of hyperlipidemic families with high LDL-C had a
similar HR for CAD compared with their relatives without high
LDL-C in 47 “high LDL-C” families (n=625 individuals) (HR,
1.71; 95% CI, 0.94–3.10). The HRs did not differ between the
cohorts (P=0.84). The mean age at incident CAD diagnosis
was similar among individuals with high LDL-C in the
hyperlipidemic families (62.8 years) and in the population
cohort (63.5 years). We also observed increased CAD risk in
individuals with high triacylglycerides in the population (HR,
1.38; 95% CI, 1.09–1.75) and a similar HR in 35 “high
triacylglyceride” families (n=371 individuals) (HR, 1.35; 95%
CI, 0.52–3.51). The HRs did not differ between the cohorts
(P=0.82). The results remained similar after adjusting for lipid-
lowering medication use and smoking (Figure S2 and
Table S3) and body mass index (Table S3). Furthermore, we
found no differences between the cohorts in the risk of
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incident CVD (P=0.42–0.98; Figure S3A and S3B; Table S3).
Meta-analyses of HRs closely approximated estimates derived
from the population cohort.

We then characterized the detailed lipidomic profiles of
550 individuals from 73 hyperlipidemic families and 897
individuals from the FINRISK population study (Methods;
Tables S4, S5 and S6). These included 105 individuals (23%)
of 463 family members in 53 high LDL-C families who had
LDL-C levels >90th percentile (mean�SD, 5.2�0.8 mmol/L)
and 64 individuals (22%) of 287 family members in 39 high
triacylglyceride families who had triacylglycerides >90th
percentile (mean�interquartile range, 3.6�1.8 mmol/L).
Using similar cutoffs in the population, 56 individuals (6%)
and 65 individuals (7%) of 897 were affected by high LDL-C
levels (mean�SD, 5.3�1.1 mmol/L) and high triacylglyc-
erides (mean�interquartile range, 3.5�1.9 mmol/L), respec-
tively. Both high LDL-C and triacylglyceride levels were
observed in 31 individuals (6%) in the family cohort and 9
individuals (1%) in the population cohort.

High LDL-C and Lipidomic Profiles
To characterize the lipidomic profiles associated with elevated
values of LDL-C, we compared individuals with high LDL-C

levels with those without. In the hyperlipidemic families,
individuals with a high LDL-C had significantly elevated levels
of 99 lipid species spread out across most of the studied lipid
classes. Reduced levels among the high LDL-C individuals
were observed for 3 lysophospatidylcholine, 2 lysophos-
phatidylethanolamine, and 1 phosphatidylcholine-ether (PCO)
species (Figure 2A; Table S7). Similar trends were seen in the
population cohort, in which the levels of 51 lipid species were
elevated among high LDL-C individuals (Figure 2B; Table S7).
The effect estimates correlated strongly across all lipid
species between the hyperlipidemic families and the popula-
tion cohorts (Pearson’s r=0.80; Figure 3). Furthermore,
we observed no significant differences in the effect
estimates between the cohorts at the 5% false discovery rate
(FDR).

We also studied the association of high LDL-C levels with
the degree of saturation of fatty acids in each lipid class. In
the hyperlipidemic families, high LDL-C levels were associated
with increased saturation of lysophospatidylcholines and
ceramides, as well as reduced saturation of lysophosphatidy-
lethanolamines, phosphatidylcholines, PCOs, and phos-
phatidylinositols (P-value range=0.019–0.0014) (Figure S4).
In the population cohort, the trends were similar, although
there was an association for increased lysophospatidylcholine

Subgroup

LDL−C > 90th percentile

In 'high LDL−C' families

In the population

Meta−analysis

TGs > 90th percentile

In 'high TG' families

In the population

Meta−analysis

Total subjects

(hyperlipidemic/

others)

625 (136/489)

19644 (2175/17469)

20269 (2311/17958)

371 (72/299)

19644 (1405/18239)

20015 (1477/18538)

Incident CAD

(hyperlipidemic/

others)

45 (16/29)

904 (176/728)

949 (192/757)

21 (3/18)

904 (74/830)

925 (77/848)

HR (95% CI)

1.71 (0.94−3.1)

1.74 (1.48−2.05)

1.74 (1.48−2.04)

1.35 (0.52−3.51)

1.38 (1.09−1.75)

1.38 (1.09−1.74)

0.5 1 1.5 2 2.5 3 3.5
CAD Hazard Ratio

Figure 1. Risk of incident coronary artery disease (CAD) in hyperlipidemias with family history and population-ascertained hyperlipidemias. To
assess the risk of incident CAD associated with the hyperlipidemia types, we used Cox proportional hazards models using age as the time scale,
stratified by sex and clustered by family, to estimate hazard ratios (HRs) for incident CAD events, excluding individuals with prevalent CAD. Further
details on the participants are presented in Table S2. LDL-C indicates low-density lipoprotein cholesterol; TG, triacylglycerides.
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saturation only (P=7.2910�4). The effect estimates did not
differ significantly between the hyperlipidemic families
and the population sample at the 5% FDR. Overall, the
lipidomic profiles associated with high LDL-C levels appeared
similar in the hyperlipidemic families and the general
population.

High Triacylglycerides and Lipidomic Profiles
In the hyperlipidemic families, individuals with high triacyl-
glycerides had elevated levels of 107 lipid species covering all
studied lipid classes with the exception of lysophos-
phatidylethanolamines. In addition, we observed reduced
levels of 7 PCO, 2 lysophospatidylcholine, and 1 phos-
phatidylinositol species (Figure 4A; Table S7). Similar profiles
were seen in the population when comparing individuals with
high triacylglycerides with those without, including elevated
levels of 108 species and reduced levels of 10 PCO and 1

lysophospatidylcholine species (Figure 4B; Table S7). The
effect estimates correlated highly across all species between
the families and the population cohort (Pearson’s r=0.96;
Figure 3). Furthermore, we observed no significant differ-
ences in the effect estimates between the cohorts at the 5%
FDR.

When contrasting the profiles observed for the 2 types of
hyperlipidemias, we saw that high triacylglyceride levels were
more uniquely reflected in a range of circulating lipid classes,
including triacylglycerides, diacylglycerides, phosphatidyleth-
anolamines, phosphatidylcholines, PCOs, and phosphatidyli-
nositols. However, associations with sphingomyelin species
appeared more unique to high LDL-C levels.

Next, we studied the association of high triacylglyceride
levels with the degree of saturation of fatty acids in each lipid
class. In both the hyperlipidemic families and the popula-
tion, having high triacylglycerides was associated with
increased saturation of triacylglycerides, diacylglycerides,

A

B

Figure 2. Associations between high low-density lipoprotein cholesterol (LDL-C) status and the levels of 151 lipid species. A, Individuals
affected by high LDL-C levels (n=105) were compared with their unaffected relatives (n=358) in the 53 “high LDL-C” families. B, Individuals
affected by high LDL-C (n=56) were compared with other individuals (n=841) in the FINRISK study population cohort. The association of high
LDL-C status with the lipid species was estimated using linear mixed models with age, age2, and sex as the other fixed-effect covariates.
Statistical significance was evaluated using the Benjamini-Hochberg method at a 5% false discovery rate (FDR). The ordering of the lipid species
within each class is the same as in Table S7. Cer indicates ceramide; DG, diacylglyceride; FDR, false discovery rate; LDL-C, low-density
lipoprotein cholesterol; LPA, lysophosphatic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine;
PCO, phosphatidylcholine-ether; PE, phosphatidylethanolamine; PEO, phosphatidylethanolamine-ether; PI, phosphatidylinositol; CE, cholesteryl
ester; SM, sphingomyelin; ST, sterol; TG, triacylglyceride.
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lysophospatidylcholines, and cholesteryl esters (CEs) (P-value
range=0.0012–5.9910�11) (Figure S5). The effect estimates
did not differ significantly between the hyperlipidemic families
and the population sample at the 5% FDR. Overall, we observed
great similarity in the lipidomic profiles associated with high
triacylglycerides in the hyperlipidemic families and in the
general population.

Independent Associations of LDL-C and
Triacylglyceride Values With the Lipid Species
We then tested if the variation in the lipid species was driven
by both LDL-C and triacylglyceride levels or if either was
dominating the profiles. For this, we estimated the indepen-
dent associations of LDL-C and triacylglyceride levels with
each lipid species in coadjusted models (Figure 5; Table S7).
In these analyses, many of the observed associations with
LDL-C were greatly diluted in magnitude, most notably for
triacylglyceride, diacylglyceride, and phosphatidylcholine spe-
cies. LDL-C levels remained most strongly associated with CE,
sphingomyelin, ceramide, phosphatidylcholine, and PCO
species in both cohorts. A total of 83 species in the
hyperlipidemic families and 91 species in the population
were independently associated with LDL-C at the 5% FDR. In
contrast, triacylglycerides remained strongly associated with
a wide range of lipid species, including all individual triacyl-
glyceride species, diacylglycerides, phosphatidylcholines,
phosphatidylethanolamines, phosphatidylinositols, ceramides,

and a subset of CEs in both cohorts. A total of 125 species in
the hyperlipidemic families and 124 species in the population
were independently associated with triacylglycerides at the
5% FDR. Overall, only 13 species were uniquely associated
with LDL-C in either cohort, whereas 42 species were
uniquely associated with triacylglycerides (Figure 6).

Discussion
Recent lipidomic approaches have identified several hundreds
of different lipid species in the human circulation, some of
which could be better prognostic biomarkers for ASCVD than
the traditional clinical chemistry measurements. In this study,
we used a mass spectrometric lipidomics platform to assess
the lipidomic profiles in individuals with high LDL-C and/or
triacylglyceride levels. We found that individuals affected by
high levels of LDL-C or triacylglycerides had CAD HRs
between 1.35 and 1.74 in the family and population cohorts
and exhibited distinct lipidomic profiles with clear variation
between lipid classes. In total, of 151 lipidomic species, 108
were significantly associated with high LDL-C and 131 with
high triacylglyceride levels in at least one cohort. Of these
species, 96 were associated with both high LDL-C and
triacylglycerides. In addition, we observed highly similar
lipidomic profiles between the hyperlipidemias with family
history and population-ascertained hyperlipidemias. The pre-
sent study is the most comprehensive lipidomic profiling of
common hyperlipidemias to date.
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Figure 3. Correlation of effect estimates for hyperlipidemia status between the hyperlipidemic families and the population
samples. The correlation between the effect estimates observed in the family and population cohorts is presented for high
low-density lipoprotein cholesterol (LDL-C) (effect estimates presented in Figure 2; A) and for high triacylglycerides (effect
estimates presented in Figure 4; B). Cer indicates ceramide; DG, diacylglyceride; LDL-C, low-density lipoprotein cholesterol;
LPA, lysophosphatic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PCO,
phosphatidylcholine-ether; PE, phosphatidylethanolamine; PEO, phosphatidylethanolamine-ether; PI, phosphatidylinositol; CE,
cholesteryl ester; SM, sphingomyelin; ST, sterol; TG, triacylglyceride.
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These findings allow us to draw several conclusions. First,
the CAD risks are highly similar regardless of whether
hyperlipidemic individuals were identified from families with
a high prevalence of similar hyperlipidemia or from the
general population. Earlier studies have found higher CAD risk
in relatives of familial combined hyperlipidemia probands
compared with spouses.25–27 Our study, however, compares
the estimates between family members and individuals with
similar lipid levels from the population to quantify the effect of
familiality. We also studied the risk associated with elevated
LDL-C and triacylglycerides separately. Our estimates for CAD
risk caused by high LDL-C with family history are lower than
typically reported for monogenic FH, despite comparable
differences in LDL-C levels.10,28,29 In the present study, we
excluded probands with monogenic FH based on a functional
LDL receptor test and genetic testing in the families.
Excepting monogenic FH, hyperlipidemias with family history
of high LDL-C and/or triacylglyceride levels have been
reported to be highly polygenic.11–13,30 The pleiotropic effects
of diverse genes and pathways, in contrast with the single
affected pathway in monogenic FH, may partly explain why we

did not observe increased CAD risk caused by familiality in our
study.

Second, to more deeply characterize potential differences
between hyperlipidemias with family history and population-
ascertained hyperlipidemias, we performed precise pheno-
typing of circulating lipid species known to be associated with
ASCVD risk.22,23,31 Individual lipid species, including sphin-
golipids, glycerophospholipids, glycerolipids, and CEs, have
previously been associated with ASCVD incidence or event
risk over traditional risk factors.22,23,31,32 Major differences in
the metabolic pathways underlying different types of hyper-
lipidemias would thus be expected to be reflected in different
lipidomic profiles. As an example, individuals with low high-
density lipoprotein cholesterol levels have previously been
shown to have low phosphatidylethanolamine-plasmalogen
levels in high-density lipoprotein particles, a putative marker
of high-density lipoprotein antioxidative capacity.33 Herein, in
contrast, we observed similar profiles in hyperlipidemias
with family history and population-ascertained hyperlipi-
demias, highlighting the biochemical similarity of the
conditions.

A

B

Figure 4. Associations between high triacylglyceride status and the levels of 151 lipid species. A, Individuals affected by high triacylglycerides
(n=64) were compared with their unaffected relatives (n=223) in 39 “high TG” families. B, Individuals affected by high triacylglycerides (n=65) were
compared with other individuals (n=832) in the FINRISK study population cohort. The association analyses were performed similarly to Figure 2. Cer
indicates ceramide; DG, diacylglyceride; FDR, false discovery rate; LDL-C, low-density lipoprotein cholesterol; LPA, lysophosphatic acid; LPC,
lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PCO, phosphatidylcholine-ether; PE, phosphatidylethanolamine;
PEO, phosphatidylethanolamine-ether; PI, phosphatidylinositol; CE, cholesteryl ester; SM, sphingomyelin; ST, sterol; TG, triacylglyceride.
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We started by characterizing the lipid profiles associated
with high LDL-C and triacylglyceride levels. Many of the
associations were not specific to LDL-C but were rather
caused by combined dyslipidemia. LDL particles are gener-
ated in circulation as downstream metabolic products from
the triacylglyceride-rich lipoproteins and their postlipolytic
remnants by the action of 2 lipases, lipoprotein lipase and
hepatic lipase.34,35 A proportion of the core lipids, especially
cholesterol esters, and the particle surface phospholipids thus
remains in the generated LDL particles. The actions of the CE
transfer protein and phospholipid transfer protein, however,
further modulate the constituents of triacylglyceride-rich and
LDL particles.36 Percentual lipid compositions have been
reported for different lipoprotein classes, but they do not
directly reflect variation in plasma LDL-C or triacylglyceride
concentrations. For example, phosphatidylcholines have been
estimated to constitute 12% of all lipids in LDL particles
versus 3% to 9% in triacylglyceride-rich lipoproteins.37

However, in our study, phosphatidylcholines were overall
more strongly associated with triacylglyceride levels than with
LDL-C levels. Nevertheless, LDL-C remained positively asso-
ciated with a range of species, including CEs, ceramides,
sphingomyelins, phosphatidylcholines, and PCOs. Among the
strongly increased species, CE(14:0), CE(16:0), CE(16:1), CE
(18:0), sphingomyelin(34:1;2), sphingomyelin(34:2;2), sphin-
gomyelin(42:2;2), ceramide(42:1;2), and ceramide(42:2;2)
have previously been associated with the risk of ASCVD.22,23

Elevated triacylglyceride levels were associated with
differences in the levels of lipid species across most of the
studied classes. More important, most of these associations
appeared to be independent of LDL-C levels. Among the
lipid species that were strongly correlated with high triacyl-
glycerides after correction for LDL-C levels were several
species that have previously been associated with risk of
ASCVD.22,23,31 These include the species CE(14:0), CE(16:0),
CE(16:1), CE(18:0), triacylglyceride(50:1), triacylglyceride

A

B

Figure 5. Independent (coadjusted) associations of low-density lipoprotein cholesterol (LDL-C) and triacylglycerides with 151 lipid species.
Effect estimates for LDL-C and triacylglycerides were derived from linear mixed models with the lipid species as outcomes and LDL-C, log
(triacylglycerides), age, age2, and sex as fixed-effect covariates. The effect estimates were derived separately in the hyperlipidemic families
(n=550 individuals; A) and the FINRISK study population cohort (n=897 individuals; B). Effect estimates are presented for LDL-C in orange and
triacylglycerides in purple. Statistical significance was evaluated using the Benjamini-Hochberg method at a 5% false discovery rate (FDR). The
ordering of the lipid species within each class is the same as in Table S7. Cer indicates ceramide; DG, diacylglyceride; FDR, false discovery rate;
LDL-C, low-density lipoprotein cholesterol; LPA, lysophosphatic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC,
phosphatidylcholine; PCO, phosphatidylcholine-ether; PE, phosphatidylethanolamine; PEO, phosphatidylethanolamine-ether; PI, phosphatidyli-
nositol; CE, cholesteryl ester; SM, sphingomyelin; ST, sterol; TG, triacylglyceride.
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(50:2), triacylglyceride(50:3), triacylglyceride(52:2), triacyl-
glyceride(52:3), triacylglyceride(52:5), triacylglyceride(56:5),
triacylglyceride(56:6), ceramide(42:1;2), and ceramide
(42:2;2). Furthermore, high triacylglycerides were associated
with increased saturation of fatty acids in the triacylglyceride,
diacylglyceride, CE, and lysophospatidylcholine classes. Such
differences in the relative fatty acid concentrations can be
partly related to dietary intake and reflected in liver-derived
very low-density lipoprotein particles, but they are also
influenced by endogenous metabolism.38 Overall, a larger
proportion of the lipid species previously linked with
increased ASCVD risk was more strongly associated with
elevated triacylglycerides rather than with elevated LDL-C.
This suggests that the levels of these lipid biomarkers are
more closely linked with circulating triacylglyceride-rich
lipoprotein metabolism than with LDLs.

Third, several lipid species, such as specific CEs,
ceramides, and PCOs, remained independently associated
with both elevated LDL-C and triacylglycerides. Among these
species, the ceramides ceramide(42:1;2) (presumably cera-
mide[d18:1/24:0]) and ceramide(42:2;2) (presumably cera-
mide[d18:1/24:1]), the sterol esters CE(16:1) and CE(18:0),
and the sphingomyelin(34:1;2) may have added value in
ASCVD prediction over traditional lipid measurements.22,23,31

Plasma ceramides have been reported to be independent
predictors of cardiovascular events in addition to LDL-C in the
population and in patients with CAD.31,39,40 Both LDL-C and
triacylglycerides remained independently associated with all 4
ceramides quantified in our study, and LDL-C was additionally
associated with increased saturation of ceramides. Unlike
most CE species, CE(16:1) was more strongly associated with
the concentration of triacylglycerides than with LDL-C in our

study. Sphingomyelin(34:1;2) was the only sphingomyelin
species that was negatively associated with triacylglycerides;
and this association became evident only after adjusting for
LDL-C levels. In addition, some species, such as ceramide
(42:1;2) and triacylglyceride(56:6), which were positively
associated with hyperlipidemias in our sample, have previ-
ously been reported to be associated with decreased risk of
ASCVD events.23,31 These coassociations and discordances
between reported associations might explain why some lipid
species can improve risk prediction. Consequently, there is an
urgent need for a better understanding of the potential
underlying signaling and metabolic pathways.

Finally, the lipidomic profiles associated with high LDL-C or
triacylglyceride levels were comparable between hyperlipi-
demias with family history and population-ascertained hyper-
lipidemias. We observed no differences in either the levels of
individual lipid species or the saturation of fatty acids within
lipid classes. Our findings are in line with a pediatric study of
hypercholesterolemia, in which similar nuclear magnetic
resonance metabolite profiles (including lipoprotein parame-
ters and circulating fatty acids) were seen for FH and for
continuous LDL-C measures in healthy children.41 These
results support the hypothesis that hyperlipidemias with
family history and population-ascertained hyperlipidemias
have similar, overlapping, and heterogeneous pathophysio-
logical features. Our results are also reassuring for studies
that combine familial and population-based hyperlipidemic
samples to increase statistical power.

Although we present the most comprehensive character-
ization of CAD risk and circulating lipid species in common
hyperlipidemias with family history to date, our study has
limitations. Although we were unable to observe significant
differences in CAD risk caused by hyperlipidemic family
history, the large CIs in the family samples do not preclude
their possibility. Careful exclusion of individuals with comor-
bidities or using lipid-lowering medication reduced our sample
size but enabled more robust analyses. We could not perform
detailed analyses on individuals with FH as the original study
protocol led to their exclusion from further ascertainment.
Clinical ascertainment was based on 90th population lipid
percentiles; different cutoffs have also been used in other
family studies. Some of the individuals surveyed in population
cohorts might, in fact, have a family history of hyperlipidemia,
including FH, as we could not fully rule out such cases. It is
also unclear how well our results can be generalized to other
populations than Finns. The field of lipidomics is still relatively
young, and concerns have been raised about the replicability
of individual lipidomics platforms. The platform used herein
overcomes these problems by using direct infusion mass
spectrometry for high-throughput screening studies. The
similarity of lipidomic profiles between the 2 independent
cohorts also supports the replicability of the platform.

Figure 6. Overlap of the statistically significant independent
(coadjusted) associations of low-density lipoprotein cholesterol
(LDL-C) and triacylglycerides with 151 lipid species. Each shaded
area shows the number of lipid species associated with the
corresponding types of hyperlipidemias. More detailed methods
are presented in Figure 5 legend. TG indicates triacylglyceride;
LDL, low-density lipoprotein cholesterol.
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Furthermore, the lipid species included in our analyses are
heritable and associated with both known and novel genetic
lipid loci with similar effect sizes in the 2 cohorts.42 We
excluded poorly captured lipid species from the analyses;
future advances in lipidomics technology might enable their
detection. The blood samples from the hyperlipidemic families
were obtained after overnight fasting, whereas participants in
the FINRISK population study were advised to fast for 4 hours
before the examination and avoid heavy meals earlier during
the day. In this light, the similarity of lipidomic profiles
between the cohorts becomes even more striking. Moreover,
recent recommendations support routine use of nonfasting
blood samples for the assessment of plasma lipid profiles.43

In conclusion, our results highlight the similarity between
hyperlipidemias with family history and population-based hyper-
lipidemias in terms of both CAD risk and detailed lipidomic
profiles. Except for FH, our results do not support different
screening for sporadically discovered cases and those with a
family history of hyperlipidemia. Additional work is needed to
confirm the validity of this hypothesis in clinical settings.
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 1 

Data S1. Supplemental Methods 2 

Subjects and clinical measurements 3 

The Finnish hyperlipidemia families included in this study (74 families, n = 1,445 individuals with 4 

LDL-C and TG measurements) were identified as part of The European Multicenter Study on Familial 5 

Dyslipidemias in Patients with Premature Coronary Heart Disease (EUFAM) as reported previously.1, 2 6 

The probands had premature CAD and high levels of total cholesterol, TGs, or both (≥ 90th Finnish age- 7 

and sex-specific population percentile), or low HDL-C levels (≤ 10th percentile). Initial recruitment 8 

aimed to identify families with Familial Combined Hyperlipidemia (elevation of TC and/or TGs in at 9 

least two family members including the proband) or families with aggregation of low HDL-C. To 10 

exclude families with classic familial hypercholesterolemia (FH), probands were screened with an in-11 

house functional low-density lipoprotein receptor (LDLR) test similar to a test developed by Cuthbert 12 

and colleagues; further ascertainment of these families not pursued.3 Founder mutations in LDLR have 13 

been estimated to explain most (approximately 80%) of FH cases in Finland.4 Genotyping and 14 

imputation did not identify such FH mutations in the members of the remaining families.5 15 

For the present study, designation of “high LDL-C with family history” or “high TGs with 16 

family history” was made if at least two first-degree relatives of each other had LDL-C or TG levels, 17 

respectively, that were > 90th age- and sex-specific Finnish 1997 population percentiles (Supplemental 18 

Table 1). All other relatives meeting the same lipid criteria within the pedigrees were also classified as 19 

affected by the same type of hyperlipidemia with family history. A pedigree was designated as being 20 

characterized by both types of hyperlipidemias if the criteria for both designations were simultaneously 21 

fulfilled (Supplemental Figure 1). Individuals with known diabetes, hepatic or renal disease, hypo- or 22 

hyperthyroidism, pregnancy, or malignancies did not contribute to establishing family history of 23 

hyperlipidemia and were excluded from all analyses. 24 
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Samples from the Finnish National FINRISK study were used as a Finnish population-based 1 

comparison group. The National FINRISK Study is a population survey conducted every 5 years since 2 

1972.2 Collections from the 1992, 1997, 2002, 2007, and 2012 surveys are stored in the National Institute 3 

for Health and Welfare (THL) biobank. All available individuals from the 1992-2002 surveys (n = 4 

19,644 individuals) without CAD at baseline and who passed exclusion criteria were used to study the 5 

incidence of coronary artery disease associated with hyperlipidemias, and samples from the FINRISK 6 

2012 cohort underwent lipidomic profiling (n = 1,141 individuals, 897 of whom passed exclusion 7 

criteria). Individuals with known diabetes, pregnancy or cancer were excluded from the analyses. 8 

Individuals in all FINRISK cohorts were classified as being affected or unaffected by high LDL-C and 9 

high TGs based on the same lipid thresholds as in the EUFAM study. 10 

For the EUFAM families, venous serum samples were obtained after an overnight fast and 11 

measurements were obtained as described.5 Participants in the FINRISK population study were advised 12 

to fast for four hours before the examination and avoid heavy meals earlier during the day, and 13 

measurements were obtained from plasma samples as described.2 In addition to those with chronic 14 

diseases and pregnancy, individuals known to  use lipid-lowering or estrogen medication were excluded 15 

from the lipidomic analyses. 16 

Registry data 17 

Tracking of incident CAD and CVD diagnoses was based on the National Finnish Hospital Discharge 18 

Register and the National Causes-of-Death Register, whose diagnoses have been previously validated.6, 19 

7 The endpoint of incident CHD was defined as the first occurrence of fatal or nonfatal myocardial 20 

infarction (International Classification of Diseases [ICD]-10 codes I20.0 or I21-22, ICD-9 codes 410 or 21 

411.0, or ICD-8 codes 410 or 411.0 for hospital discharge; or ICD-10 I21-25, I46, R96, or R98, ICD-9 22 

410-414 or 798 [excluding 7980A], or ICD-8 410-414 or 798 for main cause-of-death) or cardiac23 

revascularization (percutaneous transluminal angioplasty or coronary artery bypass graft surgery). 24 

Similar to a previous study, the endpoint of incident CVD additionally included stroke (ICD-10 codes 25 

I61 or I63-64 [excluding code I63.6 corresponding to subarachnoid hemorrhage]; ICD-9 codes 431, 26 
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433.0, 433.1, 433.9, 434.0, 434.1, 434.9, or 436; or ICD-8 codes 431 [excluding codes 431.01 and 1 

431.91 of the Finnish adaptation of ICD-8], 433, 434, or 436 for hospital discharge or main cause-of-2 

death).8 3 

Lipidomics measurements 4 

Lipidomics measurements were performed for the EUFAM family samples in two batches (228 and 322 5 

individuals), and for the FINRISK population samples in a single batch. Plasma and serum lipids were 6 

extracted with methyl tert-butyl ether/methanol (7:2, V:V) as in Matyash et al.9 Plasma was diluted 50-7 

fold with 150 mM ammonium bicarbonate (in water). For lipid extraction, an equivalent of 1 µL of 8 

undiluted plasma was used. Internal standards were pre-mixed with the organic solvents mixture. The 9 

internal standard mixture contained: cholesterol D6, cholesteryl ester 20:0, ceramide 18:1;2/17:0, 10 

diacylglyceride 17:0/17:0, phosphatidylcholine 17:0/17:0, phosphatidylethanolamine 17:0/17:0, 11 

lysophosphatidylcholine 12:0, lysophosphatidylethanolamine 17:1, triacylglyceride 17:0/17:0/17:0 and 12 

sphingomyelin 18:1;2/12:0. After extraction, the organic phase was transferred to an infusion plate and 13 

dried in a speed vacuum concentrator. Dried extract was re-suspended in 7.5 mM ammonium acetate in 14 

chloroform/methanol/propanol (1:2:4, vol/vol/vol). All liquid handling steps were performed using 15 

Hamilton Robotics STARlet robotic platform with the Anti Droplet Control feature for organic solvents 16 

pipetting. 17 

Samples were analyzed by direct infusion in a QExactive mass spectrometer (Thermo 18 

Scientific) equipped with a TriVersa NanoMate ion source (Advion Biosciences). Samples were 19 

analyzed in both positive and negative ion modes with a resolution of Rm/z=200=280000 for MS and 20 

Rm/z=200=17500 for MSMS experiments, in a single acquisition. MSMS was triggered by an inclusion 21 

list encompassing corresponding MS mass ranges scanned in 1 Da increments. Both MS and MSMS 22 

data were combined to monitor CE, DAG and TAG ions as ammonium adducts; PC, PC O-, as acetate 23 

adducts; and PE, PE O- and PI as deprotonated anions. MS only was used to monitor LPE as 24 

deprotonated anion; Cer, SM and LPC as acetate adducts and cholesterol as ammonium adduct. 25 
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Data were analyzed with in-house developed lipid identification software based on 1 

LipidXplorer.10, 11 Data post-processing and normalization were performed using an in-house developed 2 

data management system. Only lipid identifications with a signal-to-noise ratio >5, and a signal intensity 3 

5-fold higher than in corresponding blank samples were considered for further data analysis.4 

Reproducibility was assessed by the inclusion of reference plasma samples (8 reference samples for 5 

EUFAM and 3 reference samples for FINRISK) per 96 well plate. Data were corrected for batch and 6 

drift effects. Median coefficient of variation was <10% across all batches. 7 

A total of 230 lipid species were successfully detected in both the EUFAM and FINRISK 2012 8 

cohorts, with detection rates (proportion of samples with successful quantification) between 9.7-100%. 9 

Among these, 151 species were detected in at least 80% of both EUFAM and FINRISK samples and 10 

were included in the subsequent analyses. The median absolute concentrations of the analyzed lipid 11 

species are presented separately for the family and population cohorts in Supplemental Table 5. 12 

SwissLipids names and ID codes are presented for each of the 151 lipid species  in Supplemental Table 13 

6.12 Right-skewed lipidomics measures (skewness > 1 in the FINRISK population cohort) were natural 14 

logarithm transformed prior to analyses. Values were then normalized using mean and standard 15 

deviation values derived from the FINRISK population cohort. Additionally, we calculated weighted 16 

class-specific saturation averages for each subject using the following formula: 1*p1 + 2*p2 + … + n*pn 17 

(where pn = the concentration of lipid species with n double bonds divided by the total concentration of 18 

all species belonging to the class). 19 

Genotyping and imputation 20 

To assess the association of known genetic lipid loci with the circulating lipid species, we genotyped 21 

and imputed the EUFAM and FINRISK samples using several arrays: the HumanCoreExome BeadChip, 22 

the Human610-Quad BeadChip, the Affymetrix6.0, and the Infinium HumanOmniExpress (Illumina 23 

Inc., San Diego, CA, USA). Genotype calls were generated together with other available data sets using 24 

zCall at the Institute for Molecular Medicine Finland (FIMM). After quality control, the samples were 25 

phased using SHAPEIT (version 2)13 and imputed with IMPUTE (version 2.3.1)14. We used a combined 26 
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reference panel based on 1000 Genomes Phase I integrated haplotypes produced using SHAPEIT 1 

(version 2) release on June 2014 and an in-house reference panel from 1941 whole genome sequenced 2 

Finnish individuals from the FINRISK and Health 2000 population cohorts.15 We successfully 3 

genotyped or imputed 87 lead variants associated with LDL-C and 74 lead variants associated with TGs 4 

in published genome-wide association studies.16-18 5 

Statistical analyses 6 

To assess the risk of incident coronary artery disease associated with the hyperlipidemias, we used Cox 7 

proportional hazards models stratified by sex and excluding individuals with prevalent CAD to estimate 8 

hazard ratios (HR) for incident CAD events. We confirmed the validity of Cox proportional hazards 9 

assumptions using the cox.zph function in R. 10 

We used linear mixed models to estimate the association between lipidomic parameters 11 

(concentrations of lipid species or weighted saturation averages) and the other parameter of interest 12 

(hyperlipidemia status, continuous lipid measurement, or genotype) as implemented in MMM (version 13 

1.01).19 Transformed lipid species values (or weighted saturation averages) were used as the outcomes, 14 

and hyperlipidemia status, age, age2, and sex were used as fixed effect covariates. We first assessed both 15 

cohorts (the EUFAM family cohort and the FINRISK population cohort) separately, and then together 16 

by including an interaction term between cohort and hyperlipidemia status. We examined the 17 

independent effects of LDL-C and TG levels by using transformed lipid species as the outcomes and 18 

LDL-C, log(TGs), age, age2, and sex as fixed effect covariates. Because the lipid species had been 19 

quantified in two batches for the EUFAM cohort, we performed all EUFAM analyses separately for 20 

both batches, and combined the results using fixed effects inverse-variance weighted meta-analysis as 21 

implemented in the R package ‘metafor’. P-values were calculated using Wald test. 22 
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Supplemental Figures 1 

Figure S1. Overlap of families with family histories of high LDL-C and high TGs. 2 

3 

Designation of high LDL-C with family history or high TGs with family history was made if at least 4 

two first-degree relatives of each other had LDL-C or TG levels, respectively, that were ≥ 90th age- and 5 

sex-specific Finnish 1997 population percentiles. A pedigree was designated as being affected by both 6 

high LDL-C with family history and high TGs with family history if the criteria for both designations 7 

were simultaneously fulfilled. The diagrams are presented separately for the set of families included in 8 

the analysis of incident CAD risk and B) the families included in the analysis of detailed lipidomic 9 

profiles. LDL-C = low-density lipoprotein cholesterol, TG = triglyceride. 10 

A. Families included in the analysis of incident CAD risk

B. Families included in the analysis of detailed lipidomic profiles
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10 

Figure S 2. Risk of incident CAD in hyperlipidemias with family history and population-

ascertained hyperlipidemias, adjusted by lipid lowering medication usage and smoking. 

4 

The risk of incident coronary artery disease (CAD) was estimated with Cox proportional hazards models 5 

similarly to Figure 1. Smoking and use of lipid lowering medication at baseline were included as 6 

additional covariates. 7 

8 

Subgroup

LDL−C > 90th percentile

       In 'high LDL−C' families

       In the population

       Meta−analysis

TGs > 90th percentile

       In 'high TG' families

       In the population

       Meta−analysis

Total subjects
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others)

625 (136/489)

19644 (2175/17469)
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(hyperlipidemic/

others)

45 (16/29)

904 (176/728)

949 (192/757)

21 (3/18)

904 (74/830)

925 (77/848)

HR (95% CI)

 1.72 (0.96−3.1)

 1.74 (1.47−2.05)

 1.74 (1.48−2.03)

 1.35 (0.42−4.39)

 1.34 (1.05−1.7)

 1.34 (1.06−1.69)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
CAD Hazard Ratio
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Figure S3. A. Risk of incident CVD in hyperlipidemias with family history and 1 

population-ascertained hyperlipidemias 2 

3 

B. Risk of incident CVD in hyperlipidemias with family history and population-ascertained 4 

hyperlipidemias, adjusted for lipid lowering medication usage and smoking. 5 

6 

Panel A: The risk of incident cardiovascular disease (CVD) was estimated with Cox proportional 7 

hazards models similarly to Figure 1. Panel B: Smoking and use of lipid lowering medication at baseline 8 

were included as additional covariates.  9 

Subgroup

LDL−C > 90th percentile

       In 'high LDL−C' families

       In the population

       Meta−analysis

TGs > 90th percentile

       In 'high TG' families

       In the population

       Meta−analysis
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33 (6/27)

1271 (103/1168)

1304 (109/1195)

HR (95% CI)

 1.23 (0.69−2.19)

 1.54 (1.33−1.78)

 1.52 (1.32−1.75)

 1.63 (0.81−3.3)

 1.37 (1.12−1.67)

 1.38 (1.14−1.68)

0.5 1 1.5 2 2.5 3 3.5
CVD Hazard Ratio
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 1.55 (0.67−3.56)

 1.34 (1.1−1.64)

 1.35 (1.11−1.65)
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Figure S4. Association of high LDL-C status and weighted saturation averages  1 

within each class. 2 

3 

The associations were estimated separately A) in “high LDL-C” families (total n = 463 individuals) and 4 

B) in the population samples (total n = 897 individuals). Negative effect estimates correspond to5 

increased average saturation, and positive effect estimates correspond to decreased average saturation 6 

(increased unsaturation). Statistically significant effects at 5% FDR are marked with an asterisk (*). Cer 7 

= ceramide, DG = diacylglyceride, FDR = false detection rate, LDL-C = low-density lipoprotein 8 

cholesterol, LPC = lysophosphatidylcholine, LPE = lysophosphatidylethanolamine, PC = 9 

phosphatidylcholine, PCO = phosphatidylcholine-ether, PE = phosphatidylethanolamine, PEO = 10 

phosphatidylethanolamine-ether, PI = phosphatidylinositol, CE = cholesteryl ester; SM = 11 

sphingomyelin, ST = sterol, TG = triacylglyceride. 12 
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Figure S5. Association of high TG status and weighted saturation averages within each class.  1 

2 

3 

The associations were estimated separately A) in “high TG” families (total n = 287 individuals) and B) 4 

in the population (total n = 897 individuals). Negative effect estimates correspond to increased average 5 

saturation, and positive effect estimates correspond to decreased average saturation (increased 6 

unsaturation). Statistically significant effects at 5% FDR are marked with an asterisk (*). Cer = 7 

ceramide, DG = diacylglyceride, FDR = false detection rate, LDL-C = low-density lipoprotein 8 

cholesterol, LPC = lysophosphatidylcholine, LPE = lysophosphatidylethanolamine, PC = 9 

phosphatidylcholine, PCO = phosphatidylcholine-ether, PE = phosphatidylethanolamine, PEO = 10 

phosphatidylethanolamine-ether, PI = phosphatidylinositol, CE = cholesteryl ester; SM = 11 

sphingomyelin, ST = sterol, TG = triacylglyceride. 12 

13 
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Supplemental Tables 

Table S1. Sex- and age-specific 90th population percentiles for LDL-C and TGs based on the FINRISK 1997 cohort. 

Sex Age 
90th percentile for 

LDL-C (mmol/l) 
90th percentile for 

TGs (mmol/l) 
Male 25 4,25 2,27 

30 4,27 2,79 

35 4,51 2,98 

40 4,76 3,36 

45 4,79 3,40 

50 4,86 2,90 

55 4,79 3,09 

60 4,76 3,01 

Female 25 3,93 1,56 

30 3,86 1,75 

35 4,03 1,68 

40 4,18 1,88 

45 4,59 1,93 

50 4,65 2,33 

55 5,09 2,49 

60 5,12 2,70 

Individuals with known diabetes, pregnancy or cancer were excluded prior to estimation of 90th percentile values. LDL-C = low-density lipoprotein cholesterol, 
TGs = triglycerides. 
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Table S2. Clinical and metabolic characteristics of the study individuals included in the analyses of incident CAD risk. 

 EUFAM (n = 755) FINRISK (n = 19,644) 

High LDL-C families (n = 47) High TG families (n = 35) 

Effect of 
"high LDL-C" 

status in 
EUFAM vs. 

FINRISK 

Effect of 
"high TG" 
status in 

EUFAM vs. 
FINRISK 

All 
 Affected 
by High 
LDL-C 

 Unaffected 
by High 
LDL-C 

p-value Affected 
by High 

TGs 

 Unaffected 
by High TGs  p-value All  Affected by 

High LDL-C 
 Unaffected by 

High LDL-C p-value
 Affected 
by High 

TGs 

 Unaffected by 
High TGs p-value p-value p-value

n 
(male/female) 

755 
(347/408) 

136 (67/69) 
489 

(228/261) 
72 

(23/49) 
299 

(137/162) 

19,644 
(9,026/10,

618) 

2,175 
(1,102/1,073) 

17,469 
(7,924/9,545) 

1,405 
(581/824) 

18,239 
(8,445/9,794) 

Age (years) 40.0 ± 13.9 43.7 ± 12.4 39.2 ± 14.0 0.0014 
37.1 ± 
14.1 

40.6 ± 14.1 0.07 46.1 ± 12.8 46.7 ± 12.3 46.0 ± 12.9 0.017 44.4 ± 12.6 46.2 ± 12.8 7.6e-07 0.0047 0.37 

BMI (kg/m2) 25.5 ± 5.0 26.5 ± 4.7 25.2 ± 4.9 0.03 
27.3 ± 

4.5 
25.4 ± 4.8 7e-07 26.1 ± 5.3 27.0 ± 5.1 25.9 ± 5.3 1.2e-26 28.5 ± 5.9 25.9 ± 5.2 

5.5e-
144 

0.63 0.56 

LDL-C 
(mmol/l) 3.6 ± 1.0 5.1 ± 0.7 3.2 ± 0.8 3.9e-135 3.7 ± 1.0 3.4 ± 1.0 1.2e-05 3.5 ± 1.0 5.1 ± 0.7 3.3 ± 0.8 <5e-324 3.6 ± 1.0 3.5 ± 0.9 1.8e-11 0.026 0.033 

TGs (mmol/l) 1.4 ± 0.9 1.7 ± 1.0 1.3 ± 0.7 2.2e-10 2.8 ± 1.4 1.2 ± 0.6 6.1e-87 1.3 ± 0.8 1.6 ± 0.9 1.3 ± 0.7 1.8e-86 3.0 ± 1.2 1.2 ± 0.7 <5e-324 0.15 0.32 

TC (mmol/l) 5.6 ± 1.2 7.1 ± 0.9 5.2 ± 0.9 6.6e-106 6.1 ± 1.1 5.3 ± 1.1 7.3e-15 5.5 ± 1.1 7.2 ± 0.8 5.3 ± 0.9 <5e-324 6.1 ± 1.1 5.5 ± 1.0 
3.2e-
155 

0.079 0.21 

HDL-C 
(mmol/l) 1.4 ± 0.4 1.3 ± 0.4 1.4 ± 0.4 0.0013 1.2 ± 0.4 1.4 ± 0.4 3.8e-08 1.5 ± 0.4 1.4 ± 0.4 1.5 ± 0.4 2.3e-10 1.2 ± 0.4 1.5 ± 0.4 

9.3e-
178 

0.22 0.99 

Values are presented as mean ± interquantile range for TGs, BMI, and waist circumference, and mean ± standard deviation for all other variables. A subset of the families 
fulfilled criteria for both “high LDL-C with family history” and “high TGs with family history” and were thus included in both analysis groups (Supplemental Figure 
1.A.). P-values for between-group comparisons were calculated using Wald test by a linear mixed model correcting for genetic sample relatedness. Sex and age were
used as other fixed effect covariates in addition to the group variable except when age was used as the outcome. BMI = Body Mass Index, HDL-C = high-density
lipoprotein cholesterol, LDL-C = low-density lipoprotein cholesterol, TGs = triglycerides, TC = total cholesterol.
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Table S3. Risk of incident CAD or CVD in hyperlipidemias with family history and population-ascertained hyperlipidemias. 

Outcome 
Hyperlipidemia 

type Covariates 

HR in 
hyperlipidemic 

families 
HR in the 

population 

p-value for
between-cohort 

difference Meta-analysis HR 

CAD 

High LDL-C 

None 1.71 (0.94-3.10) 1.74 (1.48-2.05) 0.84 1.74 (1.48-2.04) 

Lipid-lowering therapy + Smoking 1.72 (0.96-3.10) 1.74 (1.47-2.05) 0.73 1.74 (1.48-2.03) 

Lipid-lowering therapy + Smoking + BMI 1.83 (1.02-3.30) 1.76 (1.49-2.07) 0.92 1.76 (1.50-2.07) 

High TGs 

None 1.35 (0.52-3.51) 1.38 (1.09-1.75) 0.82 1.38 (1.09-1.74) 

Lipid-lowering therapy + Smoking 1.35 (0.42-4.39) 1.34 (1.05-1.70) 0.59 1.34 (1.06-1.69) 

Lipid-lowering therapy + Smoking + BMI 1.67 (0.60-4.65) 1.16 (0.91-1.48) 0.75 1.18 (0.93-1.50) 

CVD 

High LDL-C 

None 1.23 (0.69-2.19) 1.54 (1.33-1.78) 0.45 1.52 (1.32-1.75) 

Lipid-lowering therapy + Smoking 1.21 (0.68-2.16) 1.54 (1.33-1.78) 0.42 1.52 (1.32-1.75) 

Lipid-lowering therapy + Smoking + BMI 1.33 (0.74-2.38) 1.54 (1.33-1.79) 0.59 1.53 (1.33-1.76) 

High TGs 

None 1.63 (0.81-3.30) 1.37 (1.12-1.67) 0.74 1.38 (1.14-1.68) 

Lipid-lowering therapy + Smoking 1.55 (0.67-3.56) 1.34 (1.10-1.64) 0.98 1.35 (1.11-1.65) 

Lipid-lowering therapy + Smoking + BMI 1.98 (0.98-3.98) 1.17 (0.95-1.45) 0.81 1.23 (1.00-1.50) 

The risk of incident CAD or CVD was estimated with Cox proportional hazards models similarly to Figure 1. Additional models included adjustment for selected 
covariates. 
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Table S4. Clinical and metabolic characteristics of the study individuals included in the analyses of circulating lipidomics profiles. 

 EUFAM (n = 550) FINRISK (n = 897) 

High LDL-C families (n = 53) High TG families (n = 39) 

Effect of "high 
LDL-C" status 
in EUFAM vs. 

FINRISK 

Effect of "high 
TG" status in 
EUFAM vs. 

FINRISK 

All 
 Affected 
by High 
LDL-C 

 Unaffected 
by High LDL-

C 
p-value Affected 

by High 
TGs 

 Unaffected 
by High TGs  p-value All  Affected by 

High LDL-C 

 Unaffected 
by High 
LDL-C 

p-value
 Affected 
by High 

TGs 

 Unaffected 
by High TGs p-value p-value p-value

n (male/female) 550 
(276/274) 

105 (54/51) 
358 

(178/180) 
64 

(30/34) 
223 

(108/115) 
897 

(399/498) 
56 (27/29) 

841 
(372/469) 

65 (34/31) 
832 

(365/467) 

Age (years) 39.5 ± 14.0 41.8 ± 13.7 39.2 ± 14.0 0.11 
40.3 ± 
13.3 

39.0 ± 14.5 0.63 
48.3 ± 
13.7 

49.0 ± 15.4 48.2 ± 13.6 0.61 
44.6 ± 
12.2 

48.6 ± 13.8 0.0054 0.36 0.039 

BMI (kg/m2) 25.6 ± 4.3 26.1 ± 4.2 25.3 ± 4.0 0.00054 
28.1 ± 

7.7 
25.5 ± 3.4 0.051 26.0 ± 5.4 27.9 ± 6.2 25.9 ± 5.3 0.0051 29.1 ± 6.1 25.7 ± 5.3 1.6e-10 0.41 0.46 

Waist 
circumference 

(cm) 
86.9 ± 12.8 88.4 ± 11.0 85.7 ± 11.0 0.0034 

92.5 ± 
19.0 

88.0 ± 15.0 0.011 
89.3 ± 
19.0 

95.1 ± 16.1 88.9 ± 19.0 0.0014 
99.1 ± 
16.0 

88.6 ± 18.4 2.5e-13 0.38 0.23 

LDL-C (mmol/l) 3.6 ± 1.1 5.2 ± 0.8 3.2 ± 0.8 3.7e-120 3.9 ± 1.3 3.5 ± 1.1 4.2e-05 3.3 ± 0.9 5.3 ± 1.1 3.2 ± 0.7 8.8e-113 3.5 ± 1.4 3.3 ± 0.9 0.081 0.0019 0.38 

TGs (mmol/l) 1.5 ± 0.9 1.8 ± 1.1 1.4 ± 0.7 2e-06 3.6 ± 1.8 1.2 ± 0.6 3.4e-94 1.3 ± 0.7 1.6 ± 1.0 1.3 ± 0.7 0.00074 3.5 ± 1.9 1.1 ± 0.6 8.9e-117 0.52 0.11 

TC (mmol/l) 5.6 ± 1.2 7.0 ± 1.0 5.2 ± 1.0 1.3e-75 6.6 ± 1.4 5.3 ± 1.1 1.9e-21 5.4 ± 1.1 7.5 ± 1.2 5.3 ± 0.9 2e-85 6.3 ± 1.5 5.3 ± 1.0 1.9e-15 0.00044 0.48 

HDL-C (mmol/l) 1.3 ± 0.4 1.2 ± 0.3 1.4 ± 0.4 0.00095 1.0 ± 0.3 1.3 ± 0.4 5.4e-12 1.5 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 0.5 1.2 ± 0.3 1.5 ± 0.4 3.6e-09 0.2 0.97 

Values are presented as mean ± interquantile range for TGs and BMI, and mean ± standard deviation for all other variables. A subset of the families fulfilled criteria for 
both “high LDL-C with family history” and “high TGs with family history” and were thus included in both analysis groups (Supplemental Figure 1.B.). P-values for 
between-group comparisons were calculated using Wald test by a linear mixed model correcting for genetic sample relatedness. Sex and age were used as other fixed 
effect covariates in addition to the group variable except when age was used as the outcome. BMI = Body Mass Index, HDL-C = high-density lipoprotein cholesterol, 
LDL-C = low-density lipoprotein cholesterol, TGs = triglycerides, TC = total cholesterol, WC = waist circumference. 
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Species

Median concentration 
(pmols/mcL) in the 

hyperlipidemic families

Median concentration 
(pmols/mcL) in the 

population Species

Median concentration 
(pmols/mcL) in the 

hyperlipidemic families

Median concentration 
(pmols/mcL) in the 

population Species

Median concentration 
(pmols/mcL) in the 

hyperlipidemic families

Median concentration 
(pmols/mcL) in the 

population

Cholesterol 1900 ± 580 1600 ± 530 PC(16:0;0_18:3;0) 10 ± 5.6 8.8 ± 5.4 PCO(18:2;0/18:1;0) 0.44 ± 0.29 0.46 ± 0.28
CE(14:0;0) 35 ± 21 28 ± 16 PC(16:0;0_20:1;0) 1.1 ± 0.61 1.1 ± 0.57 PCO(18:2;0/18:2;0) 2.4 ± 1.1 2.4 ± 1.2
CE(15:0;0) 8.8 ± 5.1 8 ± 3.7 PC(16:0;0_20:2;0) 9 ± 4.3 7.9 ± 3.4 SM(32:1;2) 7.9 ± 3 7.7 ± 2.9
CE(16:0;0) 430 ± 170 370 ± 120 PC(16:0;0_20:3;0) 63 ± 34 53 ± 33 SM(34:0;2) 1.7 ± 0.84 1.8 ± 0.72
CE(16:1;0) 190 ± 120 150 ± 100 PC(16:0;0_20:4;0) 140 ± 63 130 ± 68 SM(34:1;2) 75 ± 25 69 ± 20
CE(17:0;0) 7.6 ± 3.8 6.2 ± 2.7 PC(16:0;0_20:5;0) 30 ± 25 33 ± 29 SM(34:2;2) 9.6 ± 3.2 9.2 ± 2.9
CE(17:1;0) 16 ± 8.2 12 ± 5.7 PC(16:0;0_22:4;0) 5.5 ± 2.3 4.6 ± 2.2 SM(36:1;2) 14 ± 4.9 12 ± 4.2
CE(18:0;0) 21 ± 11 16 ± 8.1 PC(16:0;0_22:5;0) 21 ± 9.4 21 ± 11 SM(36:2;2) 6.5 ± 2.5 5.9 ± 2.1
CE(18:1;0) 910 ± 350 770 ± 290 PC(16:0;0_22:6;0) 88 ± 56 82 ± 49 SM(38:1;2) 9.7 ± 3.4 9.5 ± 3.2
CE(18:2;0) 2700 ± 1000 2200 ± 710 PC(16:1;0_18:1;0) 8.1 ± 4.4 7.1 ± 3.5 SM(38:2;2) 3.8 ± 1.4 3.7 ± 1.3
CE(18:3;0) 110 ± 55 88 ± 48 PC(16:1;0_18:2;0) 6.5 ± 3.5 5.7 ± 2.9 SM(40:1;2) 16 ± 6.3 16 ± 5.1
CE(19:1;0) 1.9 ± 0.87 1.8 ± 0.84 PC(17:0;0_18:2;0) 33 ± 15 30 ± 13 SM(40:2;2) 15 ± 5 15 ± 5
CE(20:2;0) 2.6 ± 1.2 2.3 ± 1.2 PC(17:0;0_20:3;0) 7.2 ± 4.3 5.6 ± 3.1 SM(42:2;2) 38 ± 14 36 ± 12
CE(20:3;0) 39 ± 19 30 ± 14 PC(17:0;0_20:4;0) 13 ± 5.9 11 ± 5 Cer(40:1;2) 0.75 ± 0.34 0.66 ± 0.3
CE(20:4;0) 320 ± 140 270 ± 120 PC(18:0;0_18:1;0) 31 ± 16 27 ± 14 Cer(40:2;2) 0.21 ± 0.1 0.17 ± 0.09
CE(20:5;0) 82 ± 74 82 ± 73 PC(18:0;0_18:2;0) 200 ± 81 190 ± 71 Cer(42:1;2) 2 ± 0.93 1.8 ± 0.79
CE(22:6;0) 38 ± 25 34 ± 22 PC(18:0;0_18:3;0) 3.2 ± 2.2 3.3 ± 2.1 Cer(42:2;2) 1.4 ± 0.62 1.2 ± 0.55

DG(16:0;0_18:1;0) 5 ± 4.4 3.1 ± 2.8 PC(18:0;0_20:2;0) 4.1 ± 2.1 3.5 ± 1.6 PI(16:0;0_18:1;0) 1.8 ± 1.3 1.6 ± 1
DG(18:1;0_18:1;0) 7.9 ± 6.6 5.2 ± 4.2 PC(18:0;0_20:3;0) 29 ± 16 25 ± 14 PI(16:0;0_18:2;0) 1.2 ± 0.7 1.2 ± 0.69
DG(18:1;0_18:2;0) 6.6 ± 5 4.6 ± 3 PC(18:0;0_20:4;0) 61 ± 31 58 ± 25 PI(16:0;0_20:4;0) 1.8 ± 0.99 1.7 ± 1

TG(48:0;0) 5.2 ± 8.2 4.6 ± 7.7 PC(18:0;0_20:5;0) 9.9 ± 8.4 12 ± 13 PI(18:0;0_18:1;0) 2.3 ± 1.3 2.1 ± 1.1
TG(48:1;0) 29 ± 38 20 ± 27 PC(18:0;0_22:5;0) 7.1 ± 3.9 6.3 ± 2.9 PI(18:0;0_18:2;0) 4 ± 2 4.1 ± 2.1
TG(48:2;0) 24 ± 28 17 ± 20 PC(18:0;0_22:6;0) 27 ± 18 24 ± 13 PI(18:0;0_20:3;0) 2.6 ± 1.4 2.5 ± 1.3
TG(50:1;0) 66 ± 71 43 ± 53 PC(18:1;0_18:1;0) 23 ± 11 21 ± 8.7 PI(18:0;0_20:4;0) 18 ± 7.8 18 ± 6.6
TG(50:2;0) 110 ± 100 74 ± 75 PC(18:1;0_18:2;0) 62 ± 29 53 ± 23 PI(18:1;0_18:1;0) 0.82 ± 0.51 0.78 ± 0.51
TG(50:3;0) 51 ± 50 36 ± 32 PC(18:1;0_20:3;0) 9.7 ± 5.4 8.5 ± 4.1 PI(18:1;0_18:2;0) 0.66 ± 0.42 0.6 ± 0.27
TG(50:4;0) 15 ± 14 11 ± 9.8 PC(18:1;0_20:4;0) 17 ± 7.1 16 ± 6.9 PI(18:2;0_18:2;0) 0.95 ± 0.49 0.83 ± 0.52
TG(51:2;0) 10 ± 9 7 ± 5.9 PC(18:2;0_18:2;0) 26 ± 14 23 ± 12 PE(16:0;0_18:2;0) 1.6 ± 1.6 1.5 ± 1.3
TG(51:3;0) 6.4 ± 5.3 4.7 ± 3.5 PC(18:2;0_20:4;0) 11 ± 4.3 9.9 ± 4.4 PE(18:0;0_18:2;0) 4.1 ± 3.2 3.5 ± 2.6
TG(52:2;0) 240 ± 210 160 ± 140 PCO(16:0;0/16:0;0) 0.83 ± 0.45 0.64 ± 0.37 PE(18:0;0_20:4;0) 5.4 ± 3.8 4.8 ± 3.1
TG(52:3;0) 240 ± 200 160 ± 130 PCO(16:0;0/16:1;0) 0.7 ± 0.43 0.67 ± 0.57 PE(18:1;0_18:1;0) 0.48 ± 0.43 0.62 ± 0.76
TG(52:4;0) 99 ± 86 75 ± 58 PCO(16:0;0/18:1;0) 1.7 ± 0.7 1.6 ± 0.56 PEO(16:1;0/18:2;0) 1.3 ± 0.75 1.1 ± 0.61
TG(52:5;0) 26 ± 24 21 ± 16 PCO(16:0;0/18:2;0) 3.5 ± 1.6 3.4 ± 1.5 PEO(16:1;0/20:4;0) 3.7 ± 2.3 3.4 ± 2
TG(54:3;0) 64 ± 52 46 ± 37 PCO(16:0;0/20:3;0) 0.83 ± 0.57 0.95 ± 0.47 PEO(18:1;0/18:2;0) 2.3 ± 1.4 1.8 ± 1.1
TG(54:4;0) 60 ± 48 46 ± 35 PCO(16:0;0/20:4;0) 5.5 ± 2.9 5.1 ± 2.4 PEO(18:2;0/18:2;0) 1.6 ± 0.86 1.6 ± 0.82
TG(54:5;0) 43 ± 37 34 ± 27 PCO(16:1;0/16:0;0) 1.9 ± 0.77 1.8 ± 0.79 PEO(18:2;0/20:4;0) 5.7 ± 3.2 5.8 ± 2.9
TG(54:6;0) 25 ± 23 22 ± 17 PCO(16:1;0/18:1;0) 0.32 ± 0.18 0.35 ± 0.22 LPE(16:0;0) 0.56 ± 0.25 0.51 ± 0.22
TG(56:4;0) 3.8 ± 2.8 3 ± 2.1 PCO(16:1;0/18:2;0) 5.3 ± 2.6 5.2 ± 2.3 LPE(18:1;0) 0.52 ± 0.29 0.56 ± 0.37
TG(56:5;0) 10 ± 7 7.7 ± 5.1 PCO(16:1;0/20:3;0) 0.6 ± 0.29 0.57 ± 0.46 LPE(18:2;0) 1 ± 0.56 1.2 ± 0.72
TG(56:6;0) 18 ± 13 15 ± 10 PCO(17:0;0/17:1;0) 0.087 ± 0.047 0.076 ± 0.044 LPE(20:4;0) 0.71 ± 0.33 0.76 ± 0.31
TG(56:7;0) 25 ± 23 22 ± 19 PCO(18:0;0/14:0;0) 2.1 ± 0.74 1.9 ± 0.48 LPE(22:6;0) 0.7 ± 0.35 0.78 ± 0.35

PC(14:0;0_16:0;0) 2.8 ± 2 2.4 ± 1.6 PCO(18:0;0/18:2;0) 0.77 ± 0.44 0.71 ± 0.33 LPC(14:0;0) 1.1 ± 0.58 0.88 ± 0.4
PC(14:0;0_18:1;0) 3.5 ± 2.6 2.9 ± 1.9 PCO(18:0;0/20:4;0) 3.4 ± 1.6 3 ± 1.2 LPC(16:0;0) 72 ± 25 56 ± 17
PC(14:0;0_18:2;0) 3.8 ± 2.3 3.4 ± 1.7 PCO(18:1;0/16:0;0) 0.93 ± 0.37 0.87 ± 0.31 LPC(16:1;0) 1.8 ± 0.83 1.4 ± 0.66
PC(15:0;0_18:2;0) 47 ± 20 44 ± 16 PCO(18:1;0/18:1;0) 0.18 ± 0.099 0.14 ± 0.079 LPC(18:0;0) 18 ± 8.3 14 ± 5.6
PC(16:0;0_16:0;0) 9.6 ± 3.7 9.1 ± 3.4 PCO(18:1;0/18:2;0) 2.2 ± 1.1 2 ± 0.92 LPC(18:1;0) 14 ± 7.4 12 ± 5.2
PC(16:0;0_16:1;0) 12 ± 8.7 9.6 ± 7.6 PCO(18:1;0/20:3;0) 1.2 ± 0.62 0.9 ± 0.48 LPC(18:2;0) 17 ± 11 18 ± 11
PC(16:0;0_17:1;0) 20 ± 12 18 ± 11 PCO(18:1;0/20:4;0) 8.5 ± 2.8 7.6 ± 2.9 LPC(20:3;0) 1 ± 0.53 1 ± 0.5
PC(16:0;0_18:0;0) 30 ± 10 25 ± 10 PCO(18:2;0/16:0;0) 1.2 ± 0.48 1.1 ± 0.44 LPC(20:4;0) 3 ± 1.6 2.8 ± 1.4
PC(16:0;0_18:1;0) 240 ± 110 210 ± 96 PCO(18:2;0/18:0;0) 0.17 ± 0.099 0.16 ± 0.072 LPC(22:6;0) 1.1 ± 0.66 1.2 ± 0.63
PC(16:0;0_18:2;0) 480 ± 180 440 ± 150

D
ow

nloaded from
 http://ahajournals.org by on July 19, 2019

Table S5. Median concentrations of the 151 lipid species in the family and population cohorts. 



Table S6. SwissLipids names and ID codes for the 151 lipid species included in the analyses of circulating lipidomic profiles. 

Species SwissLipids Name SwissLipids ID Species SwissLipids Name SwissLipids ID 
Cholesterol cholesterol SLM:000000287 PC(18:1;0_20:3;0) Phosphatidylcholine (18:1_20:3) SLM:000063992 
CE(14:0;0) Sterol ester (27:1/14:0) SLM:000500342 PC(18:1;0_20:4;0) Phosphatidylcholine (18:1_20:4) SLM:000063993 
CE(15:0;0) Sterol ester (27:1/15:0) SLM:000500343 PC(18:2;0_18:2;0) Phosphatidylcholine (18:2_18:2) SLM:000064033 
CE(16:0;0) Sterol ester (27:1/16:0) SLM:000500346 PC(18:2;0_20:4;0) Phosphatidylcholine (18:2_20:4) SLM:000064041 
CE(16:1;0) Sterol ester (27:1/16:1) SLM:000500345 PCO(16:0;0/16:0;0) Phosphatidylcholine (O-16:0_16:0) SLM:000065919 
CE(17:0;0) Sterol ester (27:1/17:0) SLM:000500347 PCO(16:0;0/16:1;0) Phosphatidylcholine (O-16:0_16:1) SLM:000065920 
CE(17:1;0) Sterol ester (27:1/17:1) n/a PCO(16:0;0/18:1;0) Phosphatidylcholine (O-16:0_18:1) SLM:000065924 
CE(18:0;0) Sterol ester (27:1/18:0) SLM:000500352 PCO(16:0;0/18:2;0) Phosphatidylcholine (O-16:0_18:2) SLM:000065925 
CE(18:1;0) Sterol ester (27:1/18:1) SLM:000500351 PCO(16:0;0/20:3;0) Phosphatidylcholine (O-16:0_20:3) SLM:000065932 
CE(18:2;0) Sterol ester (27:1/18:2) SLM:000500350 PCO(16:0;0/20:4;0) Phosphatidylcholine (O-16:0_20:4) SLM:000065933 
CE(18:3;0) Sterol ester (27:1/18:3) SLM:000500349 PCO(16:1;0/16:0;0) Phosphatidylcholine (O-16:1_16:0) SLM:000065984 
CE(19:1;0) Sterol ester (27:1/19:1) n/a PCO(16:1;0/18:1;0) Phosphatidylcholine (O-16:1_18:1) SLM:000065989 
CE(20:2;0) Sterol ester (27:1/20:2) SLM:000500357 PCO(16:1;0/18:2;0) Phosphatidylcholine (O-16:1_18:2) SLM:000065990 
CE(20:3;0) Sterol ester (27:1/20:3) SLM:000500356 PCO(16:1;0/20:3;0) Phosphatidylcholine (O-16:1_20:3) SLM:000065997 
CE(20:4;0) Sterol ester (27:1/20:4) SLM:000500355 PCO(17:0;0/17:1;0) Phosphatidylcholine (O-17:0_17:1) n/a 
CE(20:5;0) Sterol ester (27:1/20:5) SLM:000500354 PCO(18:0;0/14:0;0) Phosphatidylcholine (O-18:0_14:0) SLM:000066176 
CE(22:6;0) Sterol ester (27:1/22:6) SLM:000500361 PCO(18:0;0/18:2;0) Phosphatidylcholine (O-18:0_18:2) SLM:000066185 
DG(16:0;0_18:1;0) Diacylglycerol (16:0_18:1) SLM:000308862 PCO(18:0;0/20:4;0) Phosphatidylcholine (O-18:0_20:4) SLM:000066193 
DG(18:1;0_18:1;0) Diacylglycerol (18:1_18:1) SLM:000309012 PCO(18:1;0/16:0;0) Phosphatidylcholine (O-18:1_16:0) SLM:000066244 
DG(18:1;0_18:2;0) Diacylglycerol (18:1_18:2) SLM:000309013 PCO(18:1;0/18:1;0) Phosphatidylcholine (O-18:1_18:1) SLM:000066249 
TG(48:0;0) Triacylglycerol (48:0) SLM:000308257 PCO(18:1;0/18:2;0) Phosphatidylcholine (O-18:1_18:2) SLM:000066250 
TG(48:1;0) Triacylglycerol (48:1) SLM:000308258 PCO(18:1;0/20:3;0) Phosphatidylcholine (O-18:1_20:3) SLM:000066257 
TG(48:2;0) Triacylglycerol (48:2) SLM:000308259 PCO(18:1;0/20:4;0) Phosphatidylcholine (O-18:1_20:4) SLM:000066258 
TG(50:1;0) Triacylglycerol (50:1) SLM:000308276 PCO(18:2;0/16:0;0) Phosphatidylcholine (O-18:2_16:0) SLM:000066309 
TG(50:2;0) Triacylglycerol (50:2) SLM:000308277 PCO(18:2;0/18:0;0) Phosphatidylcholine (O-18:2_18:0) SLM:000066313 
TG(50:3;0) Triacylglycerol (50:3) SLM:000308278 PCO(18:2;0/18:1;0) Phosphatidylcholine (O-18:2_18:1) SLM:000066314 
TG(50:4;0) Triacylglycerol (50:4) SLM:000308279 PCO(18:2;0/18:2;0) Phosphatidylcholine (O-18:2_18:2) SLM:000066315 
TG(51:2;0) Triacylglycerol (51:2) SLM:000308287 SM(32:1;2) Sphingomyelin (d32:1) SLM:000390695 
TG(51:3;0) Triacylglycerol (51:3) SLM:000308288 SM(34:0;2) Sphingomyelin (d34:0) SLM:000390716 
TG(52:2;0) Triacylglycerol (52:2) SLM:000308298 SM(34:1;2) Sphingomyelin (d34:1) SLM:000390714 
TG(52:3;0) Triacylglycerol (52:3) SLM:000308299 SM(34:2;2) Sphingomyelin (d34:2) SLM:000390712 
TG(52:4;0) Triacylglycerol (52:4) SLM:000308300 SM(36:1;2) Sphingomyelin (d36:1) SLM:000390739 
TG(52:5;0) Triacylglycerol (52:5) SLM:000308301 SM(36:2;2) Sphingomyelin (d36:2) SLM:000390737 
TG(54:3;0) Triacylglycerol (54:3) SLM:000308323 SM(38:1;2) Sphingomyelin (d38:1) SLM:000390767 
TG(54:4;0) Triacylglycerol (54:4) SLM:000308324 SM(38:2;2) Sphingomyelin (d38:2) SLM:000390765 
TG(54:5;0) Triacylglycerol (54:5) SLM:000308325 SM(40:1;2) Sphingomyelin (d40:1) SLM:000390797 
TG(54:6;0) Triacylglycerol (54:6) SLM:000308326 SM(40:2;2) Sphingomyelin (d40:2) SLM:000390795 
TG(56:4;0) Triacylglycerol (56:4) SLM:000308350 SM(42:2;2) Sphingomyelin (d42:2) SLM:000390823 
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TG(56:5;0) Triacylglycerol (56:5) SLM:000308351 Cer(40:1;2) Ceramide (d40:1) SLM:000391319 
TG(56:6;0) Triacylglycerol (56:6) SLM:000308352 Cer(40:2;2) Ceramide (d40:2) SLM:000391317 
TG(56:7;0) Triacylglycerol (56:7) SLM:000308353 Cer(42:1;2) Ceramide (d42:1) SLM:000391346 
PC(14:0;0_16:0;0) Phosphatidylcholine (14:0_16:0) SLM:000063559 Cer(42:2;2) Ceramide (d42:2) SLM:000391345 
PC(14:0;0_18:1;0) Phosphatidylcholine (14:0_18:1) SLM:000063564 PI(16:0;0_18:1;0) Phosphatidylinositol (16:0_18:1) SLM:000073801 
PC(14:0;0_18:2;0) Phosphatidylcholine (14:0_18:2) SLM:000063565 PI(16:0;0_18:2;0) Phosphatidylinositol (16:0_18:2) SLM:000073802 
PC(15:0;0_18:2;0) Phosphatidylcholine (15:0_18:2) SLM:000063676 PI(16:0;0_20:4;0) Phosphatidylinositol (16:0_20:4) SLM:000073810 
PC(16:0;0_16:0;0) Phosphatidylcholine (16:0_16:0) SLM:000063724 PI(18:0;0_18:1;0) Phosphatidylinositol (18:0_18:1) SLM:000074007 
PC(16:0;0_16:1;0) Phosphatidylcholine (16:0_16:1) SLM:000063725 PI(18:0;0_18:2;0) Phosphatidylinositol (18:0_18:2) SLM:000074008 
PC(16:0;0_17:1;0) Phosphatidylcholine (16:0_17:1) n/a PI(18:0;0_20:3;0) Phosphatidylinositol (18:0_20:3) SLM:000074015 
PC(16:0;0_18:0;0) Phosphatidylcholine (16:0_18:0) SLM:000063728 PI(18:0;0_20:4;0) Phosphatidylinositol (18:0_20:4) SLM:000074016 
PC(16:0;0_18:1;0) Phosphatidylcholine (16:0_18:1) SLM:000063729 PI(18:1;0_18:1;0) Phosphatidylinositol (18:1_18:1) SLM:000074056 
PC(16:0;0_18:2;0) Phosphatidylcholine (16:0_18:2) SLM:000063730 PI(18:1;0_18:2;0) Phosphatidylinositol (18:1_18:2) SLM:000074057 
PC(16:0;0_18:3;0) Phosphatidylcholine (16:0_18:3) SLM:000063731 PI(18:2;0_18:2;0) Phosphatidylinositol (18:2_18:2) SLM:000074105 
PC(16:0;0_20:1;0) Phosphatidylcholine (16:0_20:1) SLM:000063735 PE(16:0;0_18:2;0) Phosphatidylethanolamine (16:0_18:2) SLM:000067694 
PC(16:0;0_20:2;0) Phosphatidylcholine (16:0_20:2) SLM:000063736 PE(18:0;0_18:2;0) Phosphatidylethanolamine (18:0_18:2) SLM:000067900 
PC(16:0;0_20:3;0) Phosphatidylcholine (16:0_20:3) SLM:000063737 PE(18:0;0_20:4;0) Phosphatidylethanolamine (18:0_20:4) SLM:000067908 
PC(16:0;0_20:4;0) Phosphatidylcholine (16:0_20:4) SLM:000063738 PE(18:1;0_18:1;0) Phosphatidylethanolamine (18:1_18:1) SLM:000067948 
PC(16:0;0_20:5;0) Phosphatidylcholine (16:0_20:5) SLM:000063739 PEO(16:1;0/18:2;0) Phosphatidylethanolamine (O-16:1_18:2) SLM:000069954 
PC(16:0;0_22:4;0) Phosphatidylcholine (16:0_22:4) SLM:000063745 PEO(16:1;0/20:4;0) Phosphatidylethanolamine (O-16:1_20:4) SLM:000069962 
PC(16:0;0_22:5;0) Phosphatidylcholine (16:0_22:5) SLM:000063746 PEO(18:1;0/18:2;0) Phosphatidylethanolamine (O-18:1_18:2) SLM:000070214 
PC(16:0;0_22:6;0) Phosphatidylcholine (16:0_22:6) SLM:000063747 PEO(18:2;0/18:2;0) Phosphatidylethanolamine (O-18:2_18:2) SLM:000070279 
PC(16:1;0_18:1;0) Phosphatidylcholine (16:1_18:1) SLM:000063782 PEO(18:2;0/20:4;0) Phosphatidylethanolamine (O-18:2_20:4) SLM:000070287 
PC(16:1;0_18:2;0) Phosphatidylcholine (16:1_18:2) SLM:000063783 LPE(16:0;0) Phosphatidylethanolamine (16:0_0:0) SLM:000067687 
PC(17:0;0_18:2;0) Phosphatidylcholine (17:0_18:2) SLM:000063886 LPE(18:1;0) Phosphatidylethanolamine (18:1_0:0) SLM:000067947 
PC(17:0;0_20:3;0) Phosphatidylcholine (17:0_20:3) SLM:000063893 LPE(18:2;0) Phosphatidylethanolamine (18:2_0:0) SLM:000067996 
PC(17:0;0_20:4;0) Phosphatidylcholine (17:0_20:4) SLM:000063894 LPE(20:4;0) Phosphatidylethanolamine (20:4_0:0) SLM:000068352 
PC(18:0;0_18:1;0) Phosphatidylcholine (18:0_18:1) SLM:000063935 LPE(22:6;0) Phosphatidylethanolamine (22:6_0:0) SLM:000068676 
PC(18:0;0_18:2;0) Phosphatidylcholine (18:0_18:2) SLM:000063936 LPC(14:0;0) Phosphatidylcholine (14:0_0:0) SLM:000063555 
PC(18:0;0_18:3;0) Phosphatidylcholine (18:0_18:3) SLM:000063937 LPC(16:0;0) Phosphatidylcholine (16:0_0:0) SLM:000063723 
PC(18:0;0_20:2;0) Phosphatidylcholine (18:0_20:2) SLM:000063942 LPC(16:1;0) Phosphatidylcholine (16:1_0:0) SLM:000063777 
PC(18:0;0_20:3;0) Phosphatidylcholine (18:0_20:3) SLM:000063943 LPC(18:0;0) Phosphatidylcholine (18:0_0:0) SLM:000063933 
PC(18:0;0_20:4;0) Phosphatidylcholine (18:0_20:4) SLM:000063944 LPC(18:1;0) Phosphatidylcholine (18:1_0:0) SLM:000063983 
PC(18:0;0_20:5;0) Phosphatidylcholine (18:0_20:5) SLM:000063945 LPC(18:2;0) Phosphatidylcholine (18:2_0:0) SLM:000064032 
PC(18:0;0_22:5;0) Phosphatidylcholine (18:0_22:5) SLM:000063952 LPC(20:3;0) Phosphatidylcholine (20:3_0:0) SLM:000064347 
PC(18:0;0_22:6;0) Phosphatidylcholine (18:0_22:6) SLM:000063953 LPC(20:4;0) Phosphatidylcholine (20:4_0:0) SLM:000064388 
PC(18:1;0_18:1;0) Phosphatidylcholine (18:1_18:1) SLM:000063984 LPC(22:6;0) Phosphatidylcholine (22:6_0:0) SLM:000064712 
PC(18:1;0_18:2;0) Phosphatidylcholine (18:1_18:2) SLM:000063985 
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Table S7. Effect estimates in SD units (± SE) and p-values from linear mixed models for each lipid species. 

Class Species 

Effect of high LDL-
C affection in 
"high LDL-C" 

families p-value 

Effect of high LDL-
C affection in 

FINRISK p-value 

Effect of high TG 
affection in 
"high TG" 
families p-value 

Effect of high TG 
affection in 

FINRISK p-value 

Independent 
association with 
LDL-C in EUFAM p-value 

Independent 
association with 
LDL-C in FINRISK p-value 

Independent 
association with 

TG in EUFAM p-value 

Independent 
association with 

TG in FINRISK p-value 
ST Cholesterol 0.83 ± 0.093 5.4e-19* 0.93 ± 0.14 7.1e-11* 1 ± 0.12 1.3e-18* 0.99 ± 0.13 1.4e-13* 0.33 ± 0.029 4.2e-31* 0.39 ± 0.034 7.7e-30* 0.32 ± 0.029 3.3e-27* 0.25 ± 0.032 1.3e-14* 

CE CE(14:0;0) 0.64 ± 0.099 1.3e-10* 0.99 ± 0.14 2.1e-12* 0.75 ± 0.12 9.5e-10* 1 ± 0.13 7.5e-15* 0.24 ± 0.033 2.7e-13* 0.34 ± 0.033 1.4e-24* 0.31 ± 0.034 1e-19* 0.33 ± 0.031 1.9e-26* 

CE(15:0;0) 0.49 ± 0.1 1.1e-06* 0.84 ± 0.14 4.1e-09* 0.42 ± 0.13 0.0013* 0.26 ± 0.13 0.051 0.28 ± 0.036 8.7e-15* 0.32 ± 0.036 1.3e-18* 0.088 ± 0.037 0.017* 0.064 ± 0.034 0.061 

CE(16:0;0) 0.71 ± 0.078 7.3e-20* 1 ± 0.14 6.5e-14* 0.81 ± 0.11 1.4e-13* 0.75 ± 0.13 5e-09* 0.31 ± 0.027 7.1e-32* 0.42 ± 0.033 1.6e-37* 0.26 ± 0.027 1e-21* 0.2 ± 0.031 7.9e-11* 

CE(16:1;0) 0.44 ± 0.1 2.3e-05* 0.2 ± 0.14 0.15 0.92 ± 0.13 4.4e-13* 0.65 ± 0.13 6.3e-07* 0.16 ± 0.035 8.5e-06* 0.14 ± 0.036 0.00011* 0.37 ± 0.036 9.1e-25* 0.26 ± 0.034 1.6e-14* 

CE(17:0;0) 0.61 ± 0.097 4.6e-10* 0.85 ± 0.14 4.2e-09* 0.38 ± 0.12 0.0021* 0.24 ± 0.14 0.073 0.3 ± 0.035 3.4e-17* 0.34 ± 0.037 2.2e-20* 0.079 ± 0.036 0.03* 0.022 ± 0.035 0.53 

CE(17:1;0) 0.62 ± 0.098 2.9e-10* 1.1 ± 0.14 6.2e-16* 0.67 ± 0.13 1e-07* 0.79 ± 0.13 1.7e-09* 0.28 ± 0.034 1.2e-16* 0.41 ± 0.033 1.1e-35* 0.22 ± 0.035 2.1e-10* 0.24 ± 0.031 1.8e-14* 

CE(18:0;0) 0.75 ± 0.099 2.3e-14* 1.3 ± 0.14 6.8e-21* 0.95 ± 0.13 3.1e-13* 0.75 ± 0.13 1.1e-08* 0.32 ± 0.032 1.8e-23* 0.46 ± 0.033 4.4e-45* 0.31 ± 0.032 7.4e-22* 0.21 ± 0.031 5.2e-12* 

CE(18:1;0) 0.63 ± 0.089 1.6e-12* 1 ± 0.14 3.2e-14* 0.77 ± 0.12 3e-11* 0.71 ± 0.13 6.1e-08* 0.28 ± 0.031 1.2e-19* 0.41 ± 0.033 2.3e-35* 0.26 ± 0.031 1.7e-16* 0.19 ± 0.032 2.1e-09* 

CE(18:2;0) 0.63 ± 0.078 3.6e-16* 0.99 ± 0.14 1.4e-12* 0.45 ± 0.11 2.6e-05* 0.35 ± 0.13 0.008* 0.34 ± 0.027 3.7e-35* 0.43 ± 0.034 5.3e-36* 0.076 ± 0.028 0.0068* 0.046 ± 0.033 0.17 

CE(18:3;0) 0.48 ± 0.09 9.6e-08* 0.76 ± 0.15 4.5e-07* 0.74 ± 0.11 4.6e-11* 1 ± 0.13 3.8e-15* 0.2 ± 0.031 8.1e-11* 0.3 ± 0.035 3.1e-17* 0.28 ± 0.031 1.6e-19* 0.35 ± 0.032 1.2e-26* 

CE(19:1;0) 0.69 ± 0.11 9e-11* 0.92 ± 0.15 2.4e-10* 0.39 ± 0.15 0.01* 0.37 ± 0.15 0.013* 0.36 ± 0.041 1.1e-18* 0.36 ± 0.038 1.7e-21* -0.0066 ± 0.047 0.89 -0.046 ± 0.038 0.22 

CE(20:2;0) 0.5 ± 0.1 8.2e-07* 0.76 ± 0.15 3.1e-07* 0.18 ± 0.14 0.22 -0.086 ± 0.15 0.57 0.34 ± 0.038 4.3e-19* 0.36 ± 0.038 6.5e-21* -0.044 ± 0.042 0.3 -0.21 ± 0.038 1.6e-08* 

CE(20:3;0) 0.63 ± 0.093 1.2e-11* 0.94 ± 0.14 5.7e-11* 0.98 ± 0.13 1.4e-13* 0.91 ± 0.13 3.9e-12* 0.29 ± 0.031 5.3e-21* 0.38 ± 0.033 7.4e-31* 0.33 ± 0.031 7.2e-27* 0.34 ± 0.031 7.7e-28* 

CE(20:4;0) 0.62 ± 0.088 1.7e-12* 0.92 ± 0.14 3.9e-11* 0.65 ± 0.13 5.4e-07* 0.49 ± 0.13 0.00022* 0.32 ± 0.032 2.1e-23* 0.42 ± 0.034 6.9e-35* 0.16 ± 0.032 3.3e-07* 0.15 ± 0.032 2.8e-06* 

CE(20:5;0) 0.54 ± 0.092 3.8e-09* 0.55 ± 0.14 8.2e-05* 0.37 ± 0.12 0.0015* 0.27 ± 0.13 0.037* 0.26 ± 0.034 5.6e-15* 0.25 ± 0.036 5.2e-12* 0.12 ± 0.034 0.00044* 0.062 ± 0.034 0.066 

CE(22:6;0) 0.6 ± 0.088 1.2e-11* 0.58 ± 0.14 6e-05* 0.34 ± 0.11 0.0032* 0.17 ± 0.13 0.21 0.3 ± 0.033 1.7e-20* 0.25 ± 0.037 2.9e-11* 0.068 ± 0.033 0.038 0.03 ± 0.035 0.39 

DG DG(16:0;0_18:1;0) 0.31 ± 0.1 0.0023* 0.29 ± 0.14 0.041 1.5 ± 0.11 2.5e-42* 1.8 ± 0.12 6e-55* -0.06 ± 0.021 0.0043* -0.027 ± 0.024 0.27 0.75 ± 0.022 6e-255* 0.79 ± 0.023 6.8e-
246* 

DG(18:1;0_18:1;0) 0.38 ± 0.1 0.00015* 0.33 ± 0.14 0.021 1.6 ± 0.12 3.7e-41* 1.7 ± 0.12 1.8e-47* -0.026 ± 0.021 0.23 -0.014 ± 0.024 0.54 0.77 ± 0.022 1.8e-
267* 

0.78 ± 0.022 1.9e-
260* 

DG(18:1;0_18:2;0) 0.43 ± 0.1 2.2e-05* 0.21 ± 0.14 0.14 1.5 ± 0.11 2.4e-38* 1.8 ± 0.12 3.9e-52* 0.0094 ± 0.024 0.7 -0.035 ± 0.024 0.14 0.72 ± 0.024 9e-194* 0.79 ± 0.023 7e-269* 

TG TG(48:0;0) 0.26 ± 0.1 0.01* 0.25 ± 0.15 0.096 1.3 ± 0.12 1.4e-30* 1.7 ± 0.12 7.8e-47* -0.074 ± 0.026 0.0047* -0.04 ± 0.027 0.15 0.68 ± 0.027 7.8e-
144* 

0.74 ± 0.026 3.7e-
175* 

TG(48:1;0) 0.29 ± 0.1 0.0057* 0.26 ± 0.15 0.072 1.4 ± 0.12 3.2e-34* 1.8 ± 0.12 1.4e-53* -0.055 ± 0.024 0.024* -0.025 ± 0.022 0.27 0.74 ± 0.025 1.1e-
190* 

0.83 ± 0.021 <5e-
324* 

TG(48:2;0) 0.28 ± 0.11 0.0088* 0.26 ± 0.16 0.094 1.5 ± 0.12 3.5e-36* 1.9 ± 0.12 4.4e-56* -0.06 ± 0.025 0.014* -0.044 ± 0.022 0.043 0.77 ± 0.025 2.1e-
200* 

0.86 ± 0.02 <5e-
324* 

TG(50:1;0) 0.32 ± 0.1 0.0013* 0.26 ± 0.15 0.076 1.5 ± 0.11 1.4e-39* 1.7 ± 0.12 2.5e-46* -0.06 ± 0.021 0.0043* -0.011 ± 0.026 0.67 0.76 ± 0.022 1.4e-
266* 

0.76 ± 0.024 1.3e-
218* 
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TG(50:2;0) 0.34 ± 0.1 0.0011* 0.31 ± 0.15 0.039 1.6 ± 0.12 1.5e-45* 1.8 ± 0.12 6.3e-49* -0.058 ± 0.02 0.0033* 0.00052 ± 0.024 0.98 0.82 ± 0.02 <5e-
324* 

0.8 ± 0.022 2.5e-
277* 

TG(50:3;0) 0.36 ± 0.11 0.00054* 0.25 ± 0.15 0.084 1.6 ± 0.12 4e-45* 1.8 ± 0.12 3e-51* -0.042 ± 0.02 0.04 -0.03 ± 0.022 0.17 0.83 ± 0.021 <5e-
324* 

0.82 ± 0.021 <5e-
324* 

TG(50:4;0) 0.34 ± 0.11 0.0016* 0.21 ± 0.15 0.16 1.5 ± 0.12 1.4e-39* 1.9 ± 0.12 2.3e-56* -0.038 ± 0.022 0.083 -0.075 ± 0.022 0.00048* 0.81 ± 0.023 1.1e-
283* 

0.85 ± 0.02 <5e-
324* 

TG(51:2;0) 0.38 ± 0.1 0.00026* 0.32 ± 0.15 0.028 1.5 ± 0.11 5.4e-41* 1.8 ± 0.12 4.5e-53* -0.018 ± 0.023 0.42 0.0012 ± 0.019 0.95 0.77 ± 0.023 4.3e-
244* 

0.87 ± 0.019 <5e-
324* 

TG(51:3;0) 0.44 ± 0.11 3.5e-05* 0.39 ± 0.15 0.012* 1.5 ± 0.12 1.4e-40* 1.8 ± 0.12 6.2e-53* 0.0087 ± 0.022 0.7 -0.016 ± 0.021 0.44 0.78 ± 0.022 9.7e-
264* 

0.86 ± 0.019 <5e-
324* 

TG(52:2;0) 0.37 ± 0.1 2e-04* 0.12 ± 0.14 0.4 1.6 ± 0.11 1.8e-49* 1.4 ± 0.12 8.7e-32* -0.031 ± 0.018 0.086 -0.0023 ± 0.029 0.94 0.8 ± 0.019 <5e-
324* 

0.66 ± 0.028 1.9e-
124* 

TG(52:3;0) 0.42 ± 0.1 4.1e-05* 0.16 ± 0.15 0.28 1.6 ± 0.12 8.2e-44* 1.5 ± 0.12 2.4e-36* -0.0075 ± 0.021 0.72 -0.04 ± 0.029 0.16 0.79 ± 0.022 2.1e-
289* 

0.67 ± 0.027 2.9e-
137* 

TG(52:4;0) 0.4 ± 0.1 8.5e-05* 0.25 ± 0.15 0.093 1.5 ± 0.12 5.8e-38* 1.5 ± 0.12 2.2e-34* 0.0019 ± 0.024 0.94 -0.0072 ± 0.028 0.8 0.76 ± 0.024 3.4e-
217* 

0.69 ± 0.027 9.5e-
147* 

TG(52:5;0) 0.39 ± 0.1 2e-04* 0.2 ± 0.15 0.17 1.5 ± 0.12 2.6e-36* 1.8 ± 0.12 1.4e-52* -0.0045 ± 0.024 0.85 -0.066 ± 0.023 0.0047* 0.76 ± 0.024 5.5e-
215* 

0.81 ± 0.022 5.8e-
298* 

TG(54:3;0) 0.33 ± 0.099 0.00072* 0.15 ± 0.15 0.32 1.5 ± 0.12 1.4e-36* 1.4 ± 0.13 2.8e-27* -0.037 ± 0.023 0.11 -0.032 ± 0.031 0.29 0.73 ± 0.024 6e-207* 0.62 ± 0.029 5.8e-
102* 

TG(54:4;0) 0.34 ± 0.1 0.00067* 0.068 ± 0.15 0.64 1.4 ± 0.12 2.4e-32* 1.4 ± 0.12 2.3e-28* -0.027 ± 0.026 0.3 -0.076 ± 0.03 0.012* 0.7 ± 0.027 8.5e-
153* 

0.62 ± 0.028 7.6e-
108* 

TG(54:5;0) 0.35 ± 0.1 0.00046* 0.19 ± 0.15 0.19 1.4 ± 0.11 1.2e-35* 1.6 ± 0.12 4.7e-42* -0.021 ± 0.025 0.41 -0.076 ± 0.029 0.0082* 0.72 ± 0.025 1.2e-
175* 

0.68 ± 0.027 1.4e-
141* 

TG(54:6;0) 0.4 ± 0.099 6.6e-05* 0.24 ± 0.14 0.094 1.4 ± 0.11 2.3e-35* 1.7 ± 0.12 2.2e-48* -0.0034 ± 0.024 0.89 -0.08 ± 0.026 0.0025* 0.71 ± 0.024 1.8e-
185* 

0.71 ± 0.025 5e-181* 

TG(56:4;0) 0.33 ± 0.11 0.0029* 0.012 ± 0.15 0.94 1.5 ± 0.11 6.3e-43* 1.8 ± 0.12 2.1e-49* -0.028 ± 0.024 0.26 -0.12 ± 0.025 7.3e-07* 0.74 ± 0.024 1.5e-
216* 

0.81 ± 0.024 1.5e-
245* 

TG(56:5;0) 0.4 ± 0.098 5.2e-05* 0.26 ± 0.15 0.082 1.5 ± 0.1 3.9e-46* 1.8 ± 0.12 2.2e-49* 0.017 ± 0.023 0.45 -0.015 ± 0.024 0.52 0.7 ± 0.023 2.7e-
212* 

0.8 ± 0.023 2.1e-
269* 

TG(56:6;0) 0.43 ± 0.096 6.2e-06* 0.43 ± 0.14 0.0027* 1.4 ± 0.1 3.3e-42* 1.7 ± 0.12 1.7e-46* 0.027 ± 0.022 0.23 0.045 ± 0.026 0.079 0.69 ± 0.022 1.6e-
208* 

0.71 ± 0.024 8.7e-
191* 

TG(56:7;0) 0.46 ± 0.096 1.3e-06* 0.36 ± 0.14 0.014* 1.3 ± 0.11 3.8e-31* 1.4 ± 0.12 4.8e-30* 0.061 ± 0.025 0.016* 0.072 ± 0.03 0.016* 0.61 ± 0.026 9.6e-
122* 

0.58 ± 0.028 8.6e-91* 

PC PC(14:0;0_16:0;0) 0.26 ± 0.11 0.019* 0.19 ± 0.14 0.18 0.58 ± 0.13 4.2e-06* 0.85 ± 0.13 4.7e-11* 0.029 ± 0.039 0.46 0.0087 ± 0.036 0.81 0.29 ± 0.039 7.2e-14* 0.32 ± 0.034 1.3e-21* 

PC(14:0;0_18:1;0) 0.13 ± 0.11 0.23 0.079 ± 0.15 0.59 0.61 ± 0.12 6e-07* 0.95 ± 0.13 5e-13* -0.034 ± 0.037 0.35 0.0035 ± 0.035 0.92 0.37 ± 0.036 6.8e-24* 0.39 ± 0.034 6.4e-31* 

PC(14:0;0_18:2;0) 0.11 ± 0.1 0.26 0.15 ± 0.16 0.33 0.56 ± 0.11 3e-07* 0.98 ± 0.14 5.3e-13* 0.00082 ± 0.034 0.98 0.0067 ± 0.039 0.86 0.28 ± 0.034 7.6e-16* 0.37 ± 0.035 3.9e-25* 

PC(15:0;0_18:2;0) 0.22 ± 0.1 0.033* 0.24 ± 0.16 0.13 0.51 ± 0.12 2.1e-05* 0.83 ± 0.15 2.2e-08* 0.0014 ± 0.038 0.97 -0.0068 ± 0.04 0.86 0.27 ± 0.04 1.8e-11* 0.26 ± 0.038 8.2e-12* 

PC(16:0;0_16:0;0) 0.3 ± 0.086 0.00052* 0.48 ± 0.14 0.00089* 0.63 ± 0.1 8.2e-10* 0.65 ± 0.13 6.9e-07* 0.053 ± 0.031 0.092 0.09 ± 0.037 0.015* 0.22 ± 0.033 1.6e-11* 0.16 ± 0.035 6.7e-06* 

PC(16:0;0_16:1;0) 0.13 ± 0.11 0.25 0.082 ± 0.15 0.57 0.95 ± 0.12 2.2e-14* 1.1 ± 0.13 1.3e-17* -0.048 ± 0.037 0.19 -0.035 ± 0.035 0.31 0.41 ± 0.037 1.1e-29* 0.42 ± 0.033 2.7e-37* 

PC(16:0;0_17:1;0) 0.027 ± 0.09 0.77 0.075 ± 0.16 0.63 0.52 ± 0.11 3e-06* 0.4 ± 0.14 0.0039* -0.023 ± 0.033 0.48 -0.022 ± 0.039 0.58 0.26 ± 0.033 1.2e-14* 0.23 ± 0.037 5.9e-10* 

PC(16:0;0_18:0;0) 0.32 ± 0.089 3e-04* 0.12 ± 0.15 0.44 0.5 ± 0.11 8.7e-06* 0.49 ± 0.14 0.00036* 0.13 ± 0.032 1e-04* 0.033 ± 0.039 0.4 0.19 ± 0.033 1.1e-08* 0.15 ± 0.037 4.4e-05* 

PC(16:0;0_18:1;0) 0.23 ± 0.1 0.026* 0.16 ± 0.14 0.28 0.93 ± 0.11 1.2e-16* 1 ± 0.13 1.1e-15* -0.015 ± 0.035 0.67 0.028 ± 0.035 0.43 0.39 ± 0.035 9.2e-28* 0.38 ± 0.034 2.3e-29* 

PC(16:0;0_18:2;0) 0.3 ± 0.095 0.0013* 0.082 ± 0.15 0.58 0.77 ± 0.11 5e-12* 0.73 ± 0.13 4.2e-08* 0.058 ± 0.034 0.082 0.00071 ± 0.037 0.98 0.3 ± 0.034 5.1e-18* 0.25 ± 0.035 1.8e-12* 

PC(16:0;0_18:3;0) 0.19 ± 0.11 0.083 -3e-04 ± 0.15 1 0.68 ± 0.13 1.8e-07* 1 ± 0.13 8.5e-15* 0.006 ± 0.038 0.87 -0.048 ± 0.035 0.17 0.36 ± 0.038 1.4e-21* 0.41 ± 0.033 4.3e-34* 

PC(16:0;0_20:1;0) 0.32 ± 0.1 0.0025* 0.45 ± 0.15 0.0028* 0.58 ± 0.12 3.4e-06* 0.82 ± 0.14 2.7e-09* 0.11 ± 0.038 0.0035* 0.054 ± 0.038 0.16 0.18 ± 0.038 4e-06* 0.24 ± 0.036 2.3e-11* 

PC(16:0;0_20:2;0) 0.42 ± 0.1 2.7e-05* 0.13 ± 0.15 0.37 0.91 ± 0.12 1.5e-13* 0.79 ± 0.14 6.1e-09* 0.1 ± 0.033 0.002* 0.051 ± 0.037 0.17 0.39 ± 0.034 2.4e-30* 0.32 ± 0.035 6.8e-20* 
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PC(16:0;0_20:3;0) 0.39 ± 0.1 9.5e-05* 0.13 ± 0.15 0.37 1.2 ± 0.13 3.2e-21* 1.2 ± 0.13 8e-21* 0.027 ± 0.031 0.39 0.023 ± 0.033 0.49 0.53 ± 0.032 7.3e-61* 0.5 ± 0.032 1.3e-56* 

PC(16:0;0_20:4;0) 0.25 ± 0.092 0.0079* 0.21 ± 0.15 0.15 0.9 ± 0.12 2.1e-13* 0.77 ± 0.13 7.1e-09* 0.0024 ± 0.033 0.94 0.068 ± 0.036 0.059 0.37 ± 0.033 2.3e-29* 0.33 ± 0.034 2.2e-21* 

PC(16:0;0_20:5;0) 0.31 ± 0.1 0.0024* 0.36 ± 0.14 0.011* 0.49 ± 0.12 4e-05* 0.48 ± 0.13 0.00019* 0.067 ± 0.036 0.061 0.08 ± 0.037 0.029* 0.26 ± 0.036 6.5e-13* 0.12 ± 0.035 0.00034* 

PC(16:0;0_22:4;0) 0.24 ± 0.098 0.016* 0.24 ± 0.16 0.14 0.69 ± 0.13 5e-08* 0.95 ± 0.14 3.1e-12* 0.031 ± 0.035 0.37 0.083 ± 0.039 0.031* 0.27 ± 0.036 2.5e-14* 0.33 ± 0.036 1.3e-19* 

PC(16:0;0_22:5;0) 0.4 ± 0.1 6.1e-05* 0.28 ± 0.14 0.049 0.68 ± 0.12 2.5e-08* 0.67 ± 0.13 2.6e-07* 0.11 ± 0.035 0.0015* 0.055 ± 0.037 0.14 0.3 ± 0.035 1.3e-17* 0.24 ± 0.035 1.3e-11* 

PC(16:0;0_22:6;0) 0.45 ± 0.095 1.8e-06* 0.28 ± 0.14 0.05 0.58 ± 0.12 1.2e-06* 0.42 ± 0.13 0.00099* 0.13 ± 0.034 8.5e-05* 0.067 ± 0.036 0.066 0.24 ± 0.034 1.8e-12* 0.14 ± 0.035 6.3e-05* 

PC(16:1;0_18:1;0) 0.083 ± 0.11 0.43 -0.025 ± 0.15 0.86 0.62 ± 0.12 2.4e-07* 0.6 ± 0.13 4.4e-06* -0.059 ± 0.037 0.11 -0.035 ± 0.037 0.34 0.32 ± 0.037 5.3e-18* 0.29 ± 0.035 5.2e-17* 

PC(16:1;0_18:2;0) 0.09 ± 0.1 0.38 -0.15 ± 0.15 0.3 0.53 ± 0.12 7.5e-06* 0.75 ± 0.13 1.6e-08* -0.0016 ± 0.037 0.96 -0.1 ± 0.036 0.0047* 0.25 ± 0.037 7.8e-12* 0.29 ± 0.034 8.7e-18* 

PC(17:0;0_18:2;0) 0.37 ± 0.096 0.00014* 0.36 ± 0.15 0.017* 0.56 ± 0.13 8.4e-06* 0.33 ± 0.14 0.017* 0.075 ± 0.036 0.037 0.059 ± 0.039 0.13 0.24 ± 0.037 7.4e-11* 0.13 ± 0.037 0.00027* 

PC(17:0;0_20:3;0) 0.4 ± 0.11 0.00046* 0.33 ± 0.15 0.029 0.44 ± 0.13 0.00086* 0.59 ± 0.14 1.9e-05* 0.12 ± 0.04 0.0017* 0.082 ± 0.038 0.032* 0.27 ± 0.039 3.3e-12* 0.25 ± 0.036 2.8e-12* 

PC(17:0;0_20:4;0) 0.27 ± 0.1 0.0066* 0.38 ± 0.15 0.011* 0.5 ± 0.13 7.7e-05* 0.58 ± 0.14 2.1e-05* 0.026 ± 0.037 0.48 0.15 ± 0.038 0.00011* 0.28 ± 0.037 9.8e-15* 0.24 ± 0.036 2.2e-11* 

PC(18:0;0_18:1;0) 0.3 ± 0.099 0.0025* 0.4 ± 0.15 0.0058* 0.68 ± 0.13 1.2e-07* 0.63 ± 0.13 1.7e-06* 0.066 ± 0.038 0.081 0.12 ± 0.037 0.0015* 0.3 ± 0.038 2.5e-15* 0.24 ± 0.035 2.3e-12* 

PC(18:0;0_18:2;0) 0.44 ± 0.092 2e-06* 0.29 ± 0.15 0.045 0.75 ± 0.11 2.1e-11* 0.71 ± 0.13 8.7e-08* 0.14 ± 0.033 4e-05* 0.09 ± 0.037 0.016* 0.27 ± 0.033 2.6e-16* 0.21 ± 0.036 2.2e-09* 

PC(18:0;0_18:3;0) 0.21 ± 0.094 0.028* 0.17 ± 0.16 0.28 0.56 ± 0.12 1e-06* 1 ± 0.14 7.5e-14* 0.047 ± 0.033 0.15 0.014 ± 0.038 0.71 0.3 ± 0.034 5.5e-19* 0.35 ± 0.035 7.6e-24* 

PC(18:0;0_20:2;0) 0.47 ± 0.1 3.2e-06* 0.38 ± 0.15 0.011* 0.71 ± 0.12 2.5e-09* 0.67 ± 0.14 2.5e-06* 0.15 ± 0.034 8.8e-06* 0.088 ± 0.039 0.022* 0.29 ± 0.034 3.1e-17* 0.22 ± 0.038 6.4e-09* 

PC(18:0;0_20:3;0) 0.48 ± 0.098 1.1e-06* 0.31 ± 0.15 0.033 1.3 ± 0.13 1.3e-22* 1.3 ± 0.13 2.4e-26* 0.1 ± 0.03 0.00056* 0.081 ± 0.033 0.013* 0.54 ± 0.03 6.7e-70* 0.53 ± 0.031 1.5e-66* 

PC(18:0;0_20:4;0) 0.42 ± 0.085 5.6e-07* 0.46 ± 0.15 0.0016* 0.88 ± 0.12 3.6e-13* 0.76 ± 0.13 1e-08* 0.11 ± 0.03 0.00019* 0.15 ± 0.036 2.4e-05* 0.33 ± 0.031 5e-27* 0.29 ± 0.034 6.5e-17* 

PC(18:0;0_20:5;0) 0.39 ± 0.1 0.00011* 0.24 ± 0.14 0.098 0.44 ± 0.13 0.00058* 0.48 ± 0.13 0.00028* 0.12 ± 0.036 0.00097* 0.11 ± 0.037 0.002* 0.23 ± 0.036 1.5e-10* 0.12 ± 0.035 0.00074* 

PC(18:0;0_22:5;0) 0.45 ± 0.09 6.9e-07* 0.34 ± 0.15 0.019 0.76 ± 0.12 5.4e-11* 1.1 ± 0.13 4.3e-17* 0.15 ± 0.03 1e-06* 0.088 ± 0.036 0.013* 0.32 ± 0.031 1.3e-24* 0.36 ± 0.034 1.2e-26* 

PC(18:0;0_22:6;0) 0.54 ± 0.091 3.5e-09* 0.45 ± 0.14 0.0017* 0.67 ± 0.11 2.3e-09* 0.83 ± 0.13 2.7e-10* 0.17 ± 0.032 7.4e-08* 0.12 ± 0.036 0.001* 0.27 ± 0.032 3.9e-17* 0.23 ± 0.035 1e-11* 

PC(18:1;0_18:1;0) 0.065 ± 0.1 0.52 0.12 ± 0.15 0.4 0.23 ± 0.12 0.064 0.52 ± 0.13 9.7e-05* -0.045 ± 0.036 0.22 -0.0037 ± 0.038 0.92 0.19 ± 0.037 4.6e-07* 0.18 ± 0.036 8.7e-07* 

PC(18:1;0_18:2;0) 0.19 ± 0.099 0.052 0.059 ± 0.15 0.69 0.37 ± 0.12 0.0018* 0.32 ± 0.13 0.017* 0.031 ± 0.036 0.39 -0.033 ± 0.038 0.39 0.16 ± 0.037 1.2e-05* 0.1 ± 0.036 0.0051* 

PC(18:1;0_20:3;0) 0.36 ± 0.1 0.00032* 0.099 ± 0.15 0.5 0.84 ± 0.12 4.1e-12* 0.73 ± 0.13 4.5e-08* 0.072 ± 0.033 0.029* 0.041 ± 0.036 0.26 0.37 ± 0.034 5.3e-28* 0.38 ± 0.034 4.7e-28* 

PC(18:1;0_20:4;0) 0.24 ± 0.089 0.0069* 0.25 ± 0.15 0.089 0.59 ± 0.12 6.7e-07* 0.56 ± 0.13 3.7e-05* 0.029 ± 0.032 0.37 0.072 ± 0.038 0.058 0.27 ± 0.033 1.9e-16* 0.21 ± 0.036 2.5e-09* 

PC(18:2;0_18:2;0) 0.11 ± 0.1 0.28 0.059 ± 0.15 0.69 0.15 ± 0.12 0.23 0.22 ± 0.14 0.11 0.038 ± 0.038 0.32 -0.034 ± 0.038 0.38 0.025 ± 0.039 0.53 0.045 ± 0.036 0.22 

PC(18:2;0_20:4;0) 0.43 ± 0.11 7.6e-05* 0.05 ± 0.16 0.75 0.54 ± 0.14 0.00014* 0.38 ± 0.15 0.0084* 0.11 ± 0.039 0.0073* 0.0077 ± 0.04 0.85 0.19 ± 0.041 2.4e-06* 0.13 ± 0.038 0.00099* 

PCO PCO(16:0;0/16:0;0) 0.31 ± 0.097 0.0012* 0.35 ± 0.15 0.019 0.46 ± 0.13 0.00031* 0.34 ± 0.14 0.014* 0.083 ± 0.037 0.026* 0.083 ± 0.039 0.032* 0.18 ± 0.037 1e-06* 0.038 ± 0.037 0.31 

PCO(16:0;0/16:1;0) -0.00036 ± 0.11 1 0.19 ± 0.15 0.22 0.26 ± 0.13 0.05 0.57 ± 0.14 4.3e-05* -0.049 ± 0.04 0.23 0.0052 ± 0.039 0.9 0.12 ± 0.041 0.0043* 0.16 ± 0.037 1.1e-05* 

PCO(16:0;0/18:1;0) 0.051 ± 0.089 0.56 0.29 ± 0.15 0.049 -0.18 ± 0.11 0.082 -0.16 ± 0.14 0.24 0.031 ± 0.032 0.32 0.07 ± 0.038 0.065 -0.17 ± 0.033 2.9e-07* -0.21 ± 0.036 2.6e-09* 

PCO(16:0;0/18:2;0) 0.23 ± 0.1 0.024* 0.2 ± 0.15 0.17 -0.14 ± 0.12 0.25 -0.28 ± 0.14 0.038* 0.14 ± 0.038 0.00014* 0.086 ± 0.038 0.024* -0.16 ± 0.038 3.3e-05* -0.21 ± 0.036 6.7e-09* 
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PCO(16:0;0/20:3;0) 0.45 ± 0.097 3e-06* 0.4 ± 0.15 0.008* 0.46 ± 0.13 0.00027* 0.36 ± 0.14 0.0081* 0.17 ± 0.036 3.3e-06* 0.23 ± 0.038 2.4e-09* 0.1 ± 0.036 0.0041* 0.12 ± 0.036 0.00096* 

PCO(16:0;0/20:4;0) 0.42 ± 0.1 4.6e-05* 0.43 ± 0.15 0.0032* 0.41 ± 0.14 0.0038* 0.26 ± 0.13 0.048 0.14 ± 0.038 0.00029* 0.22 ± 0.037 3.5e-09* 0.11 ± 0.039 0.0029* 0.0033 ± 0.035 0.93 

PCO(16:1;0/16:0;0) 0.11 ± 0.11 0.29 0.12 ± 0.15 0.44 -0.37 ± 0.12 0.0019* -0.38 ± 0.14 0.007* 0.089 ± 0.038 0.018* 0.058 ± 0.039 0.13 -0.27 ± 0.038 1.3e-12* -0.2 ± 0.037 5.5e-08* 

PCO(16:1;0/18:1;0) -8e-04 ± 0.1 0.99 0.26 ± 0.15 0.072 -0.43 ± 0.12 0.00031* -0.53 ± 0.13 7e-05* 0.076 ± 0.036 0.035 0.13 ± 0.036 0.00026* -0.32 ± 0.037 1.1e-17* -0.33 ± 0.034 2.5e-22* 

PCO(16:1;0/18:2;0) 0.12 ± 0.1 0.26 0.27 ± 0.15 0.071 -0.19 ± 0.12 0.1 -0.39 ± 0.14 0.0039* 0.12 ± 0.037 0.0011* 0.1 ± 0.037 0.0072* -0.21 ± 0.038 2.4e-08* -0.27 ± 0.035 5.3e-14* 

PCO(16:1;0/20:3;0) 0.33 ± 0.11 0.0034* 0.17 ± 0.16 0.27 0.26 ± 0.15 0.085 0.19 ± 0.15 0.21 0.15 ± 0.042 3e-04* 0.16 ± 0.041 7.4e-05* 0.0052 ± 0.043 0.9 0.0044 ± 0.039 0.91 

PCO(17:0;0/17:1;0) 0.12 ± 0.097 0.21 0.5 ± 0.15 0.0011* 0.16 ± 0.13 0.23 0.4 ± 0.14 0.004* 0.062 ± 0.038 0.097 0.12 ± 0.039 0.0013* 0.017 ± 0.038 0.66 0.11 ± 0.037 0.0019* 

PCO(18:0;0/14:0;0) -0.24 ± 0.096 0.012* -0.058 ± 0.15 0.7 -0.63 ± 0.12 3.7e-07* -0.63 ± 0.14 3.8e-06* -0.027 ± 0.033 0.41 0.07 ± 0.038 0.066 -0.33 ± 0.033 1.8e-23* -0.25 ± 0.036 3e-12* 

PCO(18:0;0/18:2;0) 0.16 ± 0.096 0.11 0.24 ± 0.15 0.11 -0.28 ± 0.13 0.025* -0.2 ± 0.16 0.21 0.1 ± 0.034 0.0026* 0.08 ± 0.039 0.039 -0.23 ± 0.038 1.3e-09* -0.3 ± 0.039 1.6e-14* 

PCO(18:0;0/20:4;0) 0.35 ± 0.1 0.00047* 0.42 ± 0.15 0.0047* 0.063 ± 0.13 0.62 -0.015 ± 0.14 0.91 0.17 ± 0.037 6.7e-06* 0.18 ± 0.038 2.2e-06* -0.13 ± 0.038 0.00041* -0.16 ± 0.036 9.1e-06* 

PCO(18:1;0/16:0;0) -0.0099 ± 0.097 0.92 0.2 ± 0.15 0.18 -0.25 ± 0.12 0.035* -0.32 ± 0.14 0.018* 0.0093 ± 0.035 0.79 0.073 ± 0.037 0.051 -0.19 ± 0.035 1.1e-07* -0.31 ± 0.035 2.5e-18* 

PCO(18:1;0/18:1;0) -0.038 ± 0.1 0.71 0.046 ± 0.15 0.76 -0.51 ± 0.14 0.00022* -0.038 ± 0.16 0.81 -0.021 ± 0.038 0.58 0.073 ± 0.039 0.061 -0.22 ± 0.041 1.2e-07* -0.24 ± 0.04 1e-09* 

PCO(18:1;0/18:2;0) 0.16 ± 0.1 0.12 0.26 ± 0.15 0.085 -0.3 ± 0.13 0.022* -0.44 ± 0.14 0.0014* 0.12 ± 0.038 0.0015* 0.13 ± 0.037 0.00062* -0.21 ± 0.039 4e-08* -0.29 ± 0.035 2e-16* 

PCO(18:1;0/20:3;0) 0.24 ± 0.092 0.0098* 0.036 ± 0.15 0.81 0.17 ± 0.12 0.17 0.0061 ± 0.14 0.97 0.065 ± 0.035 0.059 0.083 ± 0.039 0.034* 0.035 ± 0.036 0.33 -0.0088 ± 0.037 0.81 

PCO(18:1;0/20:4;0) 0.28 ± 0.11 0.011* 0.34 ± 0.15 0.024 0.14 ± 0.14 0.33 -0.032 ± 0.14 0.82 0.11 ± 0.04 0.0065* 0.16 ± 0.038 2.1e-05* -0.019 ± 0.041 0.64 -0.15 ± 0.036 5.8e-05* 

PCO(18:2;0/16:0;0) 0.17 ± 0.11 0.12 0.3 ± 0.15 0.045 -0.041 ± 0.14 0.77 -0.29 ± 0.14 0.035* 0.058 ± 0.04 0.15 0.083 ± 0.038 0.028* -0.046 ± 0.041 0.26 -0.22 ± 0.036 7.2e-10* 

PCO(18:2;0/18:0;0) 0.079 ± 0.097 0.41 0.26 ± 0.15 0.087 0.015 ± 0.14 0.91 -0.18 ± 0.16 0.28 0.059 ± 0.036 0.098 0.11 ± 0.04 0.0078* -0.11 ± 0.04 0.0062* -0.27 ± 0.04 1.2e-11* 

PCO(18:2;0/18:1;0) 0.12 ± 0.1 0.24 0.28 ± 0.15 0.065 -0.13 ± 0.13 0.3 -0.65 ± 0.13 1e-06* 0.074 ± 0.037 0.043 0.14 ± 0.037 1e-04* -0.17 ± 0.037 4e-06* -0.33 ± 0.035 8.5e-22* 

PCO(18:2;0/18:2;0) 0.13 ± 0.098 0.19 0.18 ± 0.15 0.23 -0.15 ± 0.12 0.21 -0.29 ± 0.14 0.032* 0.099 ± 0.035 0.0049* 0.12 ± 0.038 0.0024* -0.17 ± 0.037 3.1e-06* -0.22 ± 0.036 1.8e-09* 

SM SM(32:1;2) 0.52 ± 0.099 1.7e-07* 0.91 ± 0.14 5.6e-11* 0.44 ± 0.13 0.00058* 0.22 ± 0.13 0.082 0.26 ± 0.035 1.2e-13* 0.33 ± 0.035 1.8e-21* 0.097 ± 0.035 0.006* 0.038 ± 0.033 0.25 

SM(34:0;2) 0.55 ± 0.099 2.2e-08* 1 ± 0.14 3.6e-13* 0.18 ± 0.12 0.14 0.036 ± 0.13 0.79 0.28 ± 0.037 7.8e-15* 0.37 ± 0.035 1.3e-25* -0.0017 ± 0.037 0.96 -0.17 ± 0.034 7.3e-07* 

SM(34:1;2) 0.56 ± 0.086 8.7e-11* 0.72 ± 0.14 1.8e-07* 0.15 ± 0.11 0.19 -0.036 ± 0.13 0.79 0.31 ± 0.031 2.7e-23* 0.33 ± 0.035 3.4e-21* -0.098 ± 0.032 0.0023* -0.11 ± 0.034 0.0013* 

SM(34:2;2) 0.43 ± 0.081 1.1e-07* 0.7 ± 0.14 2.8e-07* 0.44 ± 0.11 5e-05* 0.19 ± 0.13 0.13 0.23 ± 0.03 7.3e-15* 0.28 ± 0.035 6e-16* 0.087 ± 0.03 0.004* 0.0088 ± 0.033 0.79 

SM(36:1;2) 0.57 ± 0.084 1.2e-11* 0.94 ± 0.14 1.3e-11* 0.43 ± 0.13 0.00098* 0.35 ± 0.13 0.0079* 0.31 ± 0.031 4.2e-23* 0.39 ± 0.035 2.9e-29* 0.062 ± 0.032 0.053 0.039 ± 0.033 0.24 

SM(36:2;2) 0.41 ± 0.087 2.1e-06* 0.8 ± 0.14 3.2e-09* 0.36 ± 0.13 0.0053* 0.28 ± 0.13 0.026* 0.27 ± 0.032 6.8e-17* 0.33 ± 0.034 2.7e-22* 0.059 ± 0.032 0.068 -0.0013 ± 0.033 0.97 

SM(38:1;2) 0.64 ± 0.088 4.9e-13* 0.98 ± 0.14 4.5e-12* 0.47 ± 0.12 8.7e-05* 0.34 ± 0.13 0.011* 0.32 ± 0.031 1.8e-25* 0.38 ± 0.035 6.2e-27* 0.089 ± 0.032 0.0047* 0.051 ± 0.033 0.13 

SM(38:2;2) 0.43 ± 0.088 1.3e-06* 0.65 ± 0.14 1.8e-06* 0.28 ± 0.12 0.024* 0.048 ± 0.13 0.71 0.28 ± 0.032 4.7e-19* 0.29 ± 0.035 3.4e-17* 0.0082 ± 0.032 0.8 -0.066 ± 0.033 0.045 

SM(40:1;2) 0.65 ± 0.078 1.1e-16* 0.99 ± 0.14 2.6e-12* 0.49 ± 0.11 1.3e-05* 0.35 ± 0.13 0.0088* 0.32 ± 0.028 3e-31* 0.41 ± 0.035 2.7e-31* 0.1 ± 0.028 0.00035* 0.049 ± 0.033 0.14 

SM(40:2;2) 0.59 ± 0.086 8e-12* 0.85 ± 0.14 1.1e-09* 0.28 ± 0.12 0.014* 0.13 ± 0.13 0.32 0.33 ± 0.029 9.4e-30* 0.34 ± 0.035 4.8e-22* 0.00011 ± 0.03 1 -0.041 ± 0.033 0.22 

SM(42:2;2) 0.63 ± 0.087 6.9e-13* 0.66 ± 0.14 3e-06* 0.2 ± 0.12 0.092 0.14 ± 0.13 0.3 0.34 ± 0.032 5.5e-27* 0.3 ± 0.036 5.9e-17* -0.04 ± 0.032 0.22 -0.039 ± 0.034 0.26 
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Cer Cer(40:1;2) 0.49 ± 0.092 1.1e-07* 0.74 ± 0.14 2.2e-07* 0.97 ± 0.12 2.5e-16* 0.98 ± 0.13 2.2e-14* 0.2 ± 0.032 5.5e-10* 0.26 ± 0.035 4.5e-14* 0.34 ± 0.032 3.4e-27* 0.31 ± 0.033 6.8e-21* 

Cer(40:2;2) 0.31 ± 0.09 0.00054* 0.45 ± 0.15 0.003* 0.84 ± 0.11 1.1e-13* 0.7 ± 0.14 5.1e-07* 0.14 ± 0.031 1e-05* 0.11 ± 0.039 0.005* 0.3 ± 0.032 5.5e-22* 0.23 ± 0.037 7.5e-10* 

Cer(42:1;2) 0.44 ± 0.072 1.5e-09* 0.99 ± 0.14 6.8e-13* 0.87 ± 0.099 1e-18* 1.1 ± 0.13 4.8e-19* 0.19 ± 0.025 3e-14* 0.33 ± 0.033 1.5e-24* 0.26 ± 0.025 3e-24* 0.32 ± 0.031 7e-26* 

Cer(42:2;2) 0.35 ± 0.075 3.5e-06* 0.77 ± 0.14 2.7e-08* 0.9 ± 0.11 8.5e-16* 1.1 ± 0.12 2.4e-18* 0.15 ± 0.028 3.9e-08* 0.24 ± 0.033 5.5e-13* 0.3 ± 0.028 1.5e-25* 0.32 ± 0.032 1.8e-24* 

PI PI(16:0;0_18:1;0) 0.087 ± 0.11 0.45 0.35 ± 0.15 0.019 0.66 ± 0.13 3.8e-07* 0.77 ± 0.14 1.4e-08* -0.046 ± 0.039 0.24 0.031 ± 0.038 0.41 0.34 ± 0.039 6.7e-18* 0.26 ± 0.036 8.9e-13* 

PI(16:0;0_18:2;0) 0.14 ± 0.11 0.19 -0.049 ± 0.14 0.73 0.75 ± 0.13 2.6e-09* 0.95 ± 0.13 1.2e-13* -0.045 ± 0.035 0.2 -0.092 ± 0.035 0.0083* 0.41 ± 0.036 2e-30* 0.4 ± 0.033 3.1e-34* 

PI(16:0;0_20:4;0) 0.15 ± 0.12 0.19 -0.016 ± 0.16 0.92 0.79 ± 0.14 1e-08* 1.1 ± 0.13 2.2e-15* -0.012 ± 0.039 0.75 -0.044 ± 0.036 0.22 0.42 ± 0.04 5.1e-26* 0.45 ± 0.035 4.9e-37* 

PI(18:0;0_18:1;0) 0.16 ± 0.11 0.13 0.27 ± 0.15 0.062 0.49 ± 0.13 0.00011* 0.79 ± 0.13 2.7e-09* 0.0087 ± 0.038 0.82 0.057 ± 0.037 0.12 0.29 ± 0.039 4.2e-14* 0.31 ± 0.035 3.1e-19* 

PI(18:0;0_18:2;0) 0.17 ± 0.1 0.09 0.059 ± 0.15 0.69 0.68 ± 0.12 3.4e-08* 0.72 ± 0.13 5.3e-08* -0.031 ± 0.035 0.37 -0.042 ± 0.037 0.26 0.36 ± 0.036 9.5e-24* 0.24 ± 0.035 8.5e-12* 

PI(18:0;0_20:3;0) 0.31 ± 0.11 0.0031* 0.11 ± 0.15 0.44 0.89 ± 0.12 5e-13* 0.98 ± 0.13 5.7e-14* 0.019 ± 0.034 0.58 0.0082 ± 0.035 0.82 0.44 ± 0.034 2.6e-38* 0.41 ± 0.034 9e-35* 

PI(18:0;0_20:4;0) 0.36 ± 0.083 1.4e-05* 0.49 ± 0.14 0.00075* 0.84 ± 0.11 1.3e-14* 1.1 ± 0.13 5e-18* 0.071 ± 0.027 0.0086* 0.13 ± 0.035 0.00024* 0.38 ± 0.028 7.7e-44* 0.38 ± 0.033 1e-31* 

PI(18:1;0_18:1;0) 0.019 ± 0.1 0.85 -0.079 ± 0.15 0.59 0.09 ± 0.12 0.47 0.29 ± 0.14 0.034* -0.017 ± 0.037 0.64 -0.069 ± 0.038 0.069 0.1 ± 0.038 0.0084* 0.16 ± 0.036 2.1e-05* 

PI(18:1;0_18:2;0) -0.057 ± 0.086 0.51 -0.3 ± 0.15 0.045 0.28 ± 0.12 0.022* 0.45 ± 0.14 0.0012* -0.1 ± 0.032 0.0014* -0.15 ± 0.039 7.8e-05* 0.17 ± 0.034 3e-07* 0.15 ± 0.037 4.4e-05* 

PI(18:2;0_18:2;0) 0.035 ± 0.081 0.67 0.14 ± 0.16 0.38 -0.24 ± 0.11 0.024* -0.19 ± 0.15 0.19 0.076 ± 0.032 0.019* 0.039 ± 0.04 0.33 -0.099 ± 0.033 0.0024* -0.16 ± 0.039 4.1e-05* 

PE PE(16:0;0_18:2;0) 0.11 ± 0.11 0.32 -0.074 ± 0.16 0.64 0.95 ± 0.12 2.3e-14* 1.3 ± 0.13 5.7e-22* -0.13 ± 0.034 0.00012* -0.19 ± 0.034 3.1e-08* 0.51 ± 0.034 2.9e-51* 0.58 ± 0.032 2e-72* 

PE(18:0;0_18:2;0) 0.28 ± 0.11 0.0091* 0.0098 ± 0.15 0.95 1.3 ± 0.12 4.4e-25* 1.4 ± 0.13 2.5e-29* -0.082 ± 0.03 0.0059* -0.14 ± 0.031 2.9e-06* 0.64 ± 0.03 1.6e-
101* 

0.65 ± 0.029 2.8e-
107* 

PE(18:0;0_20:4;0) 0.33 ± 0.1 0.0015* 0.12 ± 0.15 0.4 1.2 ± 0.12 4.3e-23* 1.3 ± 0.13 4.5e-23* -0.047 ± 0.031 0.12 -0.072 ± 0.031 0.022* 0.58 ± 0.031 3.1e-79* 0.62 ± 0.03 3.1e-95* 

PE(18:1;0_18:1;0) 0.051 ± 0.11 0.63 -0.32 ± 0.16 0.039 0.79 ± 0.13 1.1e-09* 0.92 ± 0.14 5.8e-11* -0.18 ± 0.035 3.3e-07* -0.25 ± 0.036 1.1e-11* 0.5 ± 0.035 5.9e-46* 0.48 ± 0.035 8e-42* 

PEO PEO(16:1;0/18:2;0) 0.19 ± 0.11 0.077 0.21 ± 0.15 0.16 0.091 ± 0.13 0.47 -0.026 ± 0.14 0.85 0.13 ± 0.039 0.0012* 0.13 ± 0.039 0.0011* -0.04 ± 0.039 0.31 -0.058 ± 0.037 0.12 

PEO(16:1;0/20:4;0) 0.34 ± 0.11 0.0017* 0.19 ± 0.15 0.22 0.4 ± 0.13 0.0031* 0.31 ± 0.14 0.025* 0.14 ± 0.04 0.00029* 0.13 ± 0.039 0.001* 0.14 ± 0.04 0.00036* 0.073 ± 0.037 0.05 

PEO(18:1;0/18:2;0) 0.19 ± 0.1 0.071 0.32 ± 0.15 0.027 -0.042 ± 0.12 0.73 -0.17 ± 0.14 0.22 0.12 ± 0.038 0.0018* 0.18 ± 0.038 1.5e-06* -0.057 ± 0.038 0.14 -0.13 ± 0.036 0.00043* 

PEO(18:2;0/18:2;0) 0.23 ± 0.11 0.036 0.41 ± 0.15 0.007* 0.092 ± 0.14 0.52 -0.0042 ± 0.14 0.98 0.11 ± 0.04 0.0077* 0.18 ± 0.039 3.9e-06* -0.035 ± 0.041 0.39 -0.063 ± 0.037 0.089 

PEO(18:2;0/20:4;0) 0.35 ± 0.1 0.00066* 0.39 ± 0.16 0.013* 0.19 ± 0.14 0.15 0.27 ± 0.14 0.064 0.15 ± 0.038 8.8e-05* 0.2 ± 0.04 4e-07* 0.073 ± 0.039 0.059 0.024 ± 0.037 0.52 

LPE LPE(16:0;0) -0.16 ± 0.11 0.13 0.066 ± 0.15 0.66 0.2 ± 0.12 0.1 0.35 ± 0.14 0.01* -0.1 ± 0.039 0.01* -0.12 ± 0.038 0.0014* 0.089 ± 0.039 0.024* 0.19 ± 0.036 1e-07* 

LPE(18:1;0) -0.26 ± 0.1 0.0094* -0.15 ± 0.15 0.31 0.063 ± 0.13 0.62 0.46 ± 0.14 0.00063* -0.12 ± 0.037 0.0014* -0.18 ± 0.038 9.4e-07* 0.054 ± 0.038 0.15 0.25 ± 0.036 1.6e-12* 

LPE(18:2;0) -0.23 ± 0.11 0.026* -0.13 ± 0.15 0.39 0.058 ± 0.12 0.64 0.27 ± 0.14 0.044 -0.089 ± 0.039 0.022* -0.16 ± 0.038 2.9e-05* 5.3e-06 ± 0.039 1 0.14 ± 0.036 5.9e-05* 

LPE(20:4;0) -0.12 ± 0.1 0.23 -0.12 ± 0.15 0.42 0.093 ± 0.11 0.41 0.33 ± 0.14 0.016* -0.085 ± 0.037 0.022* -0.095 ± 0.038 0.013* 0.0044 ± 0.037 0.91 0.15 ± 0.036 2.9e-05* 

LPE(22:6;0) 0.013 ± 0.11 0.9 -0.046 ± 0.14 0.74 0.21 ± 0.12 0.089 0.12 ± 0.13 0.35 -0.026 ± 0.039 0.51 -0.047 ± 0.037 0.2 0.079 ± 0.04 0.045 0.03 ± 0.035 0.4 

LPC LPC(14:0;0) -0.13 ± 0.11 0.23 -0.087 ± 0.15 0.57 0.37 ± 0.13 0.004* 0.7 ± 0.14 2.7e-07* -0.062 ± 0.038 0.11 -0.11 ± 0.038 0.0033* 0.22 ± 0.039 2.6e-08* 0.33 ± 0.036 3.2e-20* 

LPC(16:0;0) -0.098 ± 0.097 0.31 -0.00033 ± 0.14 1 0.12 ± 0.12 0.3 0.33 ± 0.13 0.013* -0.044 ± 0.036 0.22 -0.084 ± 0.037 0.025* 0.022 ± 0.036 0.54 0.16 ± 0.035 4.2e-06* 
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LPC(16:1;0) -0.27 ± 0.11 0.013* -0.23 ± 0.15 0.13 0.31 ± 0.13 0.021* 0.5 ± 0.14 0.00026* -0.13 ± 0.04 0.0011* -0.14 ± 0.038 0.00017* 0.12 ± 0.041 0.0029* 0.25 ± 0.036 2.3e-12* 

LPC(18:0;0) 0.16 ± 0.1 0.12 0.41 ± 0.15 0.0052* 0.048 ± 0.13 0.71 0.17 ± 0.13 0.2 0.085 ± 0.038 0.024* 0.09 ± 0.038 0.017* -0.042 ± 0.038 0.26 0.066 ± 0.036 0.067 

LPC(18:1;0) -0.27 ± 0.1 0.0059* -0.1 ± 0.15 0.49 -0.38 ± 0.12 0.0021* -0.21 ± 0.14 0.13 -0.065 ± 0.036 0.069 -0.092 ± 0.038 0.016* -0.22 ± 0.036 1.1e-09* -0.077 ± 0.036 0.035* 

LPC(18:2;0) -0.24 ± 0.092 0.0086* -0.1 ± 0.15 0.49 -0.47 ± 0.12 5.4e-05* -0.29 ± 0.13 0.032* -0.028 ± 0.031 0.38 -0.07 ± 0.038 0.064 -0.3 ± 0.032 5.8e-21* -0.084 ± 0.036 0.02* 

LPC(20:3;0) -0.051 ± 0.11 0.64 -0.12 ± 0.15 0.43 0.2 ± 0.15 0.18 0.3 ± 0.13 0.024* -0.025 ± 0.04 0.52 -0.091 ± 0.038 0.016* -0.015 ± 0.04 0.71 0.22 ± 0.036 7.4e-10* 

LPC(20:4;0) -0.2 ± 0.096 0.04 -0.094 ± 0.14 0.51 -0.21 ± 0.12 0.074 -0.03 ± 0.13 0.82 -0.051 ± 0.034 0.14 -0.061 ± 0.037 0.11 -0.15 ± 0.035 1.4e-05* 0.0063 ± 0.035 0.86 

LPC(22:6;0) -0.033 ± 0.11 0.76 -0.068 ± 0.15 0.64 -0.19 ± 0.14 0.16 -0.22 ± 0.13 0.11 0.021 ± 0.04 0.6 -0.039 ± 0.038 0.3 -0.13 ± 0.04 0.00083* -0.09 ± 0.036 0.012* 

Effect estimates for having high LDL-C or TG values were derived from linear mixed models with the lipid species as outcomes, and hyperlipidemia status, age, age2, 
and sex as fixed effect covariates. The effect estimates were estimated separately in “high LDL-C” families for high LDL-C status (total n = 463 individuals), in “high 
TG” families for high TG status (total n = 287 individuals) and in the population for both high LDL-C and high TG status (total n = 897 individuals). To estimate 
independent associations between the lipid species and LDL-C or TG levels, LDL-C, log(TGs), age, age2, and sex were used simultaneously as fixed effect covariates. 
This analysis was performed separately in the hyperlipidemic families (a); n = 550 individuals) and the FINRISK population cohort (b); n = 897 individuals). An 
empirical genetic correlation matrix between individuals was used as the covariance structure of a random effect in all models. Lipid species and continuous values of 
LDL-C and log(TGs) were normalized based on mean and standard deviation values observed in the FINRISK population cohort. P-values were calculated using Wald 
test and statistical significance was evaluated using the Benjamini-Hochberg method at a 5% false discovery rate. Statistically significant effects are marked with an 
asterisk (*). Cer = ceramide, DG = diacylglyceride, LDL-C = low-density lipoprotein cholesterol, LPC = lysophosphatidylcholine, LPE = 
lysophosphatidylethanolamine, PC = phosphatidylcholine, PCO = phosphatidylcholine-ether, PE = phosphatidylethanolamine, PEO = phosphatidylethanolamine-
ether, PI = phosphatidylinositol, CE = cholesteryl ester; SM = sphingomyelin, ST = sterol, TG = triacylglyceride. 
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